These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22106087)

  • 1. A proteomics approach to the cell-surface interactome using the enzyme-mediated activation of radical sources reaction.
    Jiang S; Kotani N; Ohnishi T; Miyagawa-Yamguchi A; Tsuda M; Yamashita R; Ishiura Y; Honke K
    Proteomics; 2012 Jan; 12(1):54-62. PubMed ID: 22106087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The enzyme-mediated activation of radical source reaction: a new approach to identify partners of a given molecule in membrane microdomains.
    Honke K; Kotani N
    J Neurochem; 2011 Mar; 116(5):690-5. PubMed ID: 21214558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Each GPI-anchored protein species forms a specific lipid raft depending on its GPI attachment signal.
    Miyagawa-Yamaguchi A; Kotani N; Honke K
    Glycoconj J; 2015 Oct; 32(7):531-40. PubMed ID: 25948169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The EMARS Reaction for Proximity Labeling.
    Honke K; Miyagawa-Yamaguchi A; Kotani N
    Methods Mol Biol; 2019; 2008():1-12. PubMed ID: 31124084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic analysis of ganglioside-associated membrane molecules: substantial basis for molecular clustering.
    Hashimoto N; Hamamura K; Kotani N; Furukawa K; Kaneko K; Honke K; Furukawa K
    Proteomics; 2012 Nov; 12(21):3154-63. PubMed ID: 22936677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of cell-surface molecular interactions under living conditions by using the enzyme-mediated activation of radical sources (EMARS) method.
    Honke K; Kotani N
    Sensors (Basel); 2012 Nov; 12(12):16037-45. PubMed ID: 23443365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of lipid raft molecules in the living brain slices.
    Kotani N; Nakano T; Ida Y; Ito R; Hashizume M; Yamaguchi A; Seo M; Araki T; Hojo Y; Honke K; Murakoshi T
    Neurochem Int; 2018 Oct; 119():140-150. PubMed ID: 28844489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interleukin 3-dependent mouse mast cells express the cholera toxin-binding acidic glycosphingolipid, ganglioside GM1, and increase their histamine content in response to toxin.
    Katz HR; Levine JS; Austen KF
    J Immunol; 1987 Sep; 139(5):1640-6. PubMed ID: 2957431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclic AMP-independent effects of cholera toxin on B cell activation. II. Binding of ganglioside GM1 induces B cell activation.
    Francis ML; Ryan J; Jobling MG; Holmes RK; Moss J; Mond JJ
    J Immunol; 1992 Apr; 148(7):1999-2005. PubMed ID: 1312102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fas signaling induces raft coalescence that is blocked by cholesterol depletion in human RPE cells undergoing apoptosis.
    Lincoln JE; Boling M; Parikh AN; Yeh Y; Gilchrist DG; Morse LS
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):2172-8. PubMed ID: 16639029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Searching for partners.
    Taniguchi N
    Proteomics; 2012 Jan; 12(1):9-10. PubMed ID: 22223624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between gangliosides and proteins in the exoplasmic leaflet of neuronal plasma membranes: a study performed with a tritium-labeled GM1 derivative containing a photoactivable group linked to the oligosaccharide chain.
    Prioni S; Mauri L; Loberto N; Casellato R; Chigorno V; Karagogeos D; Prinetti A; Sonnino S
    Glycoconj J; 2004; 21(8-9):461-70. PubMed ID: 15750787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional proteomics: mapping protein-protein interactions and pathways.
    Figeys D
    Curr Opin Mol Ther; 2002 Jun; 4(3):210-5. PubMed ID: 12139305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ions of the interactome: the role of MS in the study of protein interactions in proteomics and structural biology.
    Downard KM
    Proteomics; 2006 Oct; 6(20):5374-84. PubMed ID: 16991196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly sensitive and simple fluorescence staining of proteins in sodium dodecyl sulfate-polyacrylamide-based gels by using hydrophobic tail-mediated enhancement of fluorescein luminescence.
    Kang C; Kim HJ; Kang D; Jung DY; Suh M
    Electrophoresis; 2003 Oct; 24(19-20):3297-304. PubMed ID: 14595675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence resonance energy transfer-based technologies in the study of protein-protein interactions at the cell surface.
    Fernández-Dueñas V; Llorente J; Gandía J; Borroto-Escuela DO; Agnati LF; Tasca CI; Fuxe K; Ciruela F
    Methods; 2012 Aug; 57(4):467-72. PubMed ID: 22683304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence analysis of galactose, lactose, and fucose interaction with the cholera toxin B subunit.
    Mertz JA; McCann JA; Picking WD
    Biochem Biophys Res Commun; 1996 Sep; 226(1):140-4. PubMed ID: 8806604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategies for membrane interaction proteomics: no mass spectrometry required.
    Lam MH; Stagljar I
    Proteomics; 2012 May; 12(10):1519-26. PubMed ID: 22610515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cholera toxin promotes B cell isotype switching by two different mechanisms. cAMP induction augments germ-line Ig H-chain RNA transcripts whereas membrane ganglioside GM1-receptor binding enhances later events in differentiation.
    Lycke NY
    J Immunol; 1993 Jun; 150(11):4810-21. PubMed ID: 8388421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The bait compatibility index: computational bait selection for interaction proteomics experiments.
    Saha S; Kaur P; Ewing RM
    J Proteome Res; 2010 Oct; 9(10):4972-81. PubMed ID: 20731387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.