These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 22106950)
1. Chlorophyll a fluorescence--A useful tool for the early detection of temperature stress in spring barley (Hordeum vulgare L.). Kalaji HM; Bosa K; Kościelniak J; Hossain Z OMICS; 2011 Dec; 15(12):925-34. PubMed ID: 22106950 [TBL] [Abstract][Full Text] [Related]
2. Fluorescence parameters as early indicators of light stress in barley. Kalaji HM; Carpentier R; Allakhverdiev SI; Bosa K J Photochem Photobiol B; 2012 Jul; 112():1-6. PubMed ID: 22561010 [TBL] [Abstract][Full Text] [Related]
3. Regulation of the excitation energy utilization in the photosynthetic apparatus of chlorina f2 barley mutant grown under different irradiances. Stroch M; Cajánek M; Kalina J; Spunda V J Photochem Photobiol B; 2004 Jul; 75(1-2):41-50. PubMed ID: 15246349 [TBL] [Abstract][Full Text] [Related]
4. Strobilurin fungicides induce changes in photosynthetic gas exchange that do not improve water use efficiency of plants grown under conditions of water stress. Nason MA; Farrar J; Bartlett D Pest Manag Sci; 2007 Dec; 63(12):1191-200. PubMed ID: 17912684 [TBL] [Abstract][Full Text] [Related]
5. Glyphosate uncouples gas exchange and chlorophyll fluorescence. Olesen CF; Cedergreen N Pest Manag Sci; 2010 May; 66(5):536-42. PubMed ID: 20127759 [TBL] [Abstract][Full Text] [Related]
6. Effect of divalent cations on ion fluxes and leaf photochemistry in salinized barley leaves. Shabala S; Shabala L; Van Volkenburgh E; Newman I J Exp Bot; 2005 May; 56(415):1369-78. PubMed ID: 15809285 [TBL] [Abstract][Full Text] [Related]
7. Remodeling of the major light-harvesting antenna protein of PSII protects the young leaves of barley (Hordeum vulgare L.) from photoinhibition under prolonged iron deficiency. Saito A; Iino T; Sonoike K; Miwa E; Higuchi K Plant Cell Physiol; 2010 Dec; 51(12):2013-30. PubMed ID: 20980268 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of chlorophyll fluorescence and membrane injury in the leaves of barley cultivars under osmotic stress. Kocheva K; Lambrev P; Georgiev G; Goltsev V; Karabaliev M Bioelectrochemistry; 2004 Jun; 63(1-2):121-4. PubMed ID: 15110261 [TBL] [Abstract][Full Text] [Related]
9. Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. Oukarroum A; Schansker G; Strasser RJ Physiol Plant; 2009 Oct; 137(2):188-99. PubMed ID: 19719481 [TBL] [Abstract][Full Text] [Related]
10. Linking leaf chlorophyll fluorescence properties to physiological responses for detection of salt and drought stress in coastal plant species. Naumann JC; Young DR; Anderson JE Physiol Plant; 2007 Nov; 131(3):422-33. PubMed ID: 18251881 [TBL] [Abstract][Full Text] [Related]
11. An alternative strategy of dismantling of the chloroplasts during leaf senescence observed in a high-yield variety of barley. Krupinska K; Mulisch M; Hollmann J; Tokarz K; Zschiesche W; Kage H; Humbeck K; Bilger W Physiol Plant; 2012 Feb; 144(2):189-200. PubMed ID: 22098170 [TBL] [Abstract][Full Text] [Related]
12. Genotypic differences in thermotolerance are dependent upon prestress capacity for antioxidant protection of the photosynthetic apparatus in Gossypium hirsutum. Snider JL; Oosterhuis DM; Kawakami EM Physiol Plant; 2010 Mar; 138(3):268-77. PubMed ID: 20002327 [TBL] [Abstract][Full Text] [Related]
13. Stomatal conductance is a key parameter to assess limitations to photosynthesis and growth potential in barley genotypes. Jiang Q; Roche D; Monaco TA; Hole D Plant Biol (Stuttg); 2006 Jul; 8(4):515-21. PubMed ID: 16906488 [TBL] [Abstract][Full Text] [Related]
14. Responses of Jatropha curcas seedlings to cold stress: photosynthesis-related proteins and chlorophyll fluorescence characteristics. Liang Y; Chen H; Tang MJ; Yang PF; Shen SH Physiol Plant; 2007 Nov; 131(3):508-17. PubMed ID: 18251888 [TBL] [Abstract][Full Text] [Related]
15. Differential changes in photosynthetic capacity, 77 K chlorophyll fluorescence and chloroplast ultrastructure between Zn-efficient and Zn-inefficient rice genotypes (Oryza sativa) under low zinc stress. Chen W; Yang X; He Z; Feng Y; Hu F Physiol Plant; 2008 Jan; 132(1):89-101. PubMed ID: 18251873 [TBL] [Abstract][Full Text] [Related]
16. Changes in the room-temperature emission spectrum of chlorophyll during fast and slow phases of the Kautsky effect in intact leaves. Franck F; Dewez D; Popovic R Photochem Photobiol; 2005; 81(2):431-6. PubMed ID: 15584772 [TBL] [Abstract][Full Text] [Related]
17. Relationship between photochemical efficiency of photosystem II and the photochemical reflectance index of mango tree: merging data from different illuminations, seasons and leaf colors. Weng JH; Jhaung LH; Lin RJ; Chen HY Tree Physiol; 2010 Apr; 30(4):469-78. PubMed ID: 20233840 [TBL] [Abstract][Full Text] [Related]
18. Ionic effects of Na+ and Cl- on photosynthesis in Glycine max seedlings under isoosmotic salt stress. Chen XQ; Yu BJ Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2007 Aug; 33(4):294-300. PubMed ID: 17675752 [TBL] [Abstract][Full Text] [Related]
19. Photosystem II inhibition by moderate light under low temperature in intact leaves of chilling-sensitive and -tolerant plants. Govindachary S; Bukhov NG; Joly D; Carpentier R Physiol Plant; 2004 Jun; 121(2):322-333. PubMed ID: 15153200 [TBL] [Abstract][Full Text] [Related]
20. Effects of elevated ozone on photosynthetic CO2 exchange and chlorophyll a fluorescence in leaves of Quercus mongolica grown in urban area. Wang L; He X; Chen W Bull Environ Contam Toxicol; 2009 Apr; 82(4):478-81. PubMed ID: 19011725 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]