These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 22107192)

  • 1. Precision calculation of blackbody radiation shifts for optical frequency metrology.
    Safronova MS; Kozlov MG; Clark CW
    Phys Rev Lett; 2011 Sep; 107(14):143006. PubMed ID: 22107192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blackbody radiation shifts in optical atomic clocks.
    Safronova M; Kozlov M; Clark C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):439-47. PubMed ID: 22481777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic clock with 1×10(-18) room-temperature blackbody Stark uncertainty.
    Beloy K; Hinkley N; Phillips NB; Sherman JA; Schioppo M; Lehman J; Feldman A; Hanssen LM; Oates CW; Ludlow AD
    Phys Rev Lett; 2014 Dec; 113(26):260801. PubMed ID: 25615296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-accuracy calculation of the blackbody radiation shift in the 133Cs primary frequency standard.
    Beloy K; Safronova UI; Derevianko A
    Phys Rev Lett; 2006 Jul; 97(4):040801. PubMed ID: 16907560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precision measurement of fermionic collisions using an 87Sr optical lattice clock with 1 x 10(-16) inaccuracy.
    Swallows MD; Campbell GK; Ludlow AD; Boyd MM; Thomsen JW; Martin MJ; Blatt S; Nicholson TL; Ye J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):574-82. PubMed ID: 20211772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inner-shell clock transition in atomic thulium with a small blackbody radiation shift.
    Golovizin A; Fedorova E; Tregubov D; Sukachev D; Khabarova K; Sorokin V; Kolachevsky N
    Nat Commun; 2019 Apr; 10(1):1724. PubMed ID: 30979896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sr lattice clock at 1 x 10(-16) fractional uncertainty by remote optical evaluation with a Ca clock.
    Ludlow AD; Zelevinsky T; Campbell GK; Blatt S; Boyd MM; de Miranda MH; Martin MJ; Thomsen JW; Foreman SM; Ye J; Fortier TM; Stalnaker JE; Diddams SA; Le Coq Y; Barber ZW; Poli N; Lemke ND; Beck KM; Oates CW
    Science; 2008 Mar; 319(5871):1805-8. PubMed ID: 18276849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ytterbium in quantum gases and atomic clocks: van der Waals interactions and blackbody shifts.
    Safronova MS; Porsev SG; Clark CW
    Phys Rev Lett; 2012 Dec; 109(23):230802. PubMed ID: 23368178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a ^{88}Sr^{+} Optical Clock with a Direct Measurement of the Blackbody Radiation Shift and Determination of the Clock Frequency.
    Steinel M; Shao H; Filzinger M; Lipphardt B; Brinkmann M; Didier A; Mehlstäubler TE; Lindvall T; Peik E; Huntemann N
    Phys Rev Lett; 2023 Aug; 131(8):083002. PubMed ID: 37683165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rydberg spectroscopy in an optical lattice: blackbody thermometry for atomic clocks.
    Ovsiannikov VD; Derevianko A; Gibble K
    Phys Rev Lett; 2011 Aug; 107(9):093003. PubMed ID: 21929236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. To simulate blackbody radiation frequency shift in cesium fountain frequency standard with CO2 laser.
    Chen J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Sep; 53(9):1685-8. PubMed ID: 16964919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic clocks with suppressed blackbody radiation shift.
    Yudin VI; Taichenachev AV; Okhapkin MV; Bagayev SN; Tamm C; Peik E; Huntemann N; Mehlstäubler TE; Riehle F
    Phys Rev Lett; 2011 Jul; 107(3):030801. PubMed ID: 21838344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Black-body radiation shifts and theoretical contributions to atomic clock research.
    Safronova MS; Jiang D; Arora B; Clark CW; Kozlov MG; Safronova UI; Johnson WR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):94-105. PubMed ID: 20040432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate Determination of Blackbody Radiation Shifts in a Strontium Molecular Lattice Clock.
    Iritani B; Tiberi E; Skomorowski W; Moszynski R; Borkowski M; Zelevinsky T
    Phys Rev Lett; 2023 Dec; 131(26):263201. PubMed ID: 38215384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-accuracy measurement of the differential scalar polarizability of a 88Sr+ clock using the time-dilation effect.
    Dubé P; Madej AA; Tibbo M; Bernard JE
    Phys Rev Lett; 2014 May; 112(17):173002. PubMed ID: 24836242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High accuracy correction of blackbody radiation shift in an optical lattice clock.
    Middelmann T; Falke S; Lisdat C; Sterr U
    Phys Rev Lett; 2012 Dec; 109(26):263004. PubMed ID: 23368558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-Mode Operation of an Optical Lattice Clock Using Strontium and Ytterbium Atoms.
    Akamatsu D; Kobayashi T; Hisai Y; Tanabe T; Hosaka K; Yasuda M; Hong FL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jun; 65(6):1069-1075. PubMed ID: 29856725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spin-1/2 optical lattice clock.
    Lemke ND; Ludlow AD; Barber ZW; Fortier TM; Diddams SA; Jiang Y; Jefferts SR; Heavner TP; Parker TE; Oates CW
    Phys Rev Lett; 2009 Aug; 103(6):063001. PubMed ID: 19792559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infrared dynamic polarizability of HD+ rovibrational states.
    Koelemeij JC
    Phys Chem Chem Phys; 2011 Nov; 13(42):18844-51. PubMed ID: 21755077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncertainty Evaluation of an
    Kobayashi T; Akamatsu D; Hisai Y; Tanabe T; Inaba H; Suzuyama T; Hong FL; Hosaka K; Yasuda M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Dec; 65(12):2449-2458. PubMed ID: 30235125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.