These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 22107294)

  • 1. Onset of turbulence from the receptivity stage of fluid flows.
    Sengupta TK; Bhaumik S
    Phys Rev Lett; 2011 Oct; 107(15):154501. PubMed ID: 22107294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct numerical simulation of two-dimensional wall-bounded turbulent flows from receptivity stage.
    Sengupta TK; Bhaumik S; Bhumkar YG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026308. PubMed ID: 22463318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precursor of transition to turbulence: spatiotemporal wave front.
    Bhaumik S; Sengupta TK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043018. PubMed ID: 24827343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct numerical simulation of vortex-induced instability for a zero-pressure-gradient boundary layer.
    Sengupta A; Suman VK; Sengupta TK
    Phys Rev E; 2019 Sep; 100(3-1):033118. PubMed ID: 31640075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatiotemporal growing wave fronts in spatially stable boundary layers.
    Sengupta TK; Rao AK; Venkatasubbaiah K
    Phys Rev Lett; 2006 Jun; 96(22):224504. PubMed ID: 16803313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The rise of fully turbulent flow.
    Barkley D; Song B; Mukund V; Lemoult G; Avila M; Hof B
    Nature; 2015 Oct; 526(7574):550-3. PubMed ID: 26490621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport and entropy production due to chaos or turbulence.
    Mori H; Fujisaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026302. PubMed ID: 11308572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization of hydrodynamic flows by small viscosity variations.
    Govindarajan R; L'vov VS; Procaccia I; Sameen A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026310. PubMed ID: 12636803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of turbulent energy dissipation rate of fluid flow in the vicinity of dispersed phase boundary using spatiotemporal tree model.
    Sikiƶ P; Jalali P
    Chaos; 2014 Dec; 24(4):043139. PubMed ID: 25554059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of a turbulent Kelvin-Helmholtz shear layer model using a high-energy-density OMEGA laser experiment.
    Hurricane OA; Smalyuk VA; Raman K; Schilling O; Hansen JF; Langstaff G; Martinez D; Park HS; Remington BA; Robey HF; Greenough JA; Wallace R; Di Stefano CA; Drake RP; Marion D; Krauland CM; Kuranz CC
    Phys Rev Lett; 2012 Oct; 109(15):155004. PubMed ID: 23102319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatiotemporal velocity-velocity correlation function in fully developed turbulence.
    Canet L; Rossetto V; Wschebor N; Balarac G
    Phys Rev E; 2017 Feb; 95(2-1):023107. PubMed ID: 28297914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-to-High Confinement Transition Mediated by Turbulence Radial Wave Number Spectral Shift in a Fusion Plasma.
    Xu GS; Wan BN; Wang HQ; Guo HY; Naulin V; Rasmussen JJ; Nielsen AH; Wu XQ; Yan N; Chen L; Shao LM; Chen R; Wang L; Zhang W
    Phys Rev Lett; 2016 Mar; 116(9):095002. PubMed ID: 26991181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical behavior in the relaminarization of localized turbulence in pipe flow.
    Willis AP; Kerswell RR
    Phys Rev Lett; 2007 Jan; 98(1):014501. PubMed ID: 17358478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear transverse cascade and two-dimensional magnetohydrodynamic subcritical turbulence in plane shear flows.
    Mamatsashvili GR; Gogichaishvili DZ; Chagelishvili GD; Horton W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043101. PubMed ID: 24827349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct numerical simulations of capillary wave turbulence.
    Deike L; Fuster D; Berhanu M; Falcon E
    Phys Rev Lett; 2014 Jun; 112(23):234501. PubMed ID: 24972211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tendency to occupy a statistically dominant spatial state of the flow as a driving force for turbulent transition.
    Chekmarev SF
    Chaos; 2013 Mar; 23(1):013144. PubMed ID: 23556981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear eddy viscosity modeling and experimental study of jet spreading rates.
    Heschl C; Inthavong K; Sanz W; Tu J
    Indoor Air; 2014 Feb; 24(1):93-102. PubMed ID: 23668473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral formulation of turbulent flame speed with consideration of hydrodynamic instability.
    Chaudhuri S; Akkerman V; Law CK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026322. PubMed ID: 21929105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inverse energy cascade in three-dimensional isotropic turbulence.
    Biferale L; Musacchio S; Toschi F
    Phys Rev Lett; 2012 Apr; 108(16):164501. PubMed ID: 22680722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid path to transition via nonlinear localized optimal perturbations in a boundary-layer flow.
    Cherubini S; De Palma P; Robinet JC; Bottaro A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 2):066302. PubMed ID: 21230729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.