These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 22107357)

  • 1. Interpolations of groundwater table elevation in dissected uplands.
    Chung JW; Rogers JD
    Ground Water; 2012; 50(4):598-607. PubMed ID: 22107357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas.
    Gong G; Mattevada S; O'Bryant SE
    Environ Res; 2014 Apr; 130():59-69. PubMed ID: 24559533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of water table interpolation and groundwater storage volume using fuzzy computations.
    Masoumi Z; Rezaei A; Maleki J
    Environ Monit Assess; 2019 May; 191(6):401. PubMed ID: 31134353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application and evaluation of kriging and cokriging methods on groundwater depth mapping.
    Ahmadi SH; Sedghamiz A
    Environ Monit Assess; 2008 Mar; 138(1-3):357-68. PubMed ID: 17525831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of kriging and cokriging for the geostatistical estimation of specific capacity in the Newark Basin (NJ) aquifer system.
    Carter GP; Miskewitz RJ; Isukapalli S; Mun Y; Vyas V; Yoon S; Georgeopoulos P; Uchrin CG
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(4):371-7. PubMed ID: 21391031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of geostatistical techniques and their hybrid in modelling of groundwater quality index in the Marand Plain in Iran.
    Rostami AA; Isazadeh M; Shahabi M; Nozari H
    Environ Sci Pollut Res Int; 2019 Dec; 26(34):34993-35009. PubMed ID: 31659709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing spatial estimates of metal pollutants in raw wastewater irrigated fields using a topsoil organic carbon map predicted from aerial photography.
    Bourennane H; Dère Ch; Lamy I; Cornu S; Baize D; van Oort F; King D
    Sci Total Environ; 2006 May; 361(1-3):229-48. PubMed ID: 15993472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling and Mapping High Water Table for a Coastal Region in Florida using Lidar DEM Data.
    Zhang C; Su H; Li T; Liu W; Mitsova D; Nagarajan S; Teegavarapu R; Xie Z; Bloetscher F; Yong Y
    Ground Water; 2021 Mar; 59(2):190-198. PubMed ID: 32808323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron and Manganese in Groundwater: Using Kriging and GIS to Locate High Concentrations in Buncombe County, North Carolina.
    Johnson CD; Nandi A; Joyner TA; Luffman I
    Ground Water; 2018 Jan; 56(1):87-95. PubMed ID: 28763570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioclimatic and vegetation mapping of a topographically complex oceanic island applying different interpolation techniques.
    Garzón-Machado V; Otto R; del Arco Aguilar MJ
    Int J Biometeorol; 2014 Jul; 58(5):887-99. PubMed ID: 23686111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A geostatistical approach for multi-source data fusion to predict water table depth.
    Manzione RL; Castrignanò A
    Sci Total Environ; 2019 Dec; 696():133763. PubMed ID: 31442721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global patterns of groundwater table depth.
    Fan Y; Li H; Miguez-Macho G
    Science; 2013 Feb; 339(6122):940-3. PubMed ID: 23430651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting water table response to rainfall events, central Florida.
    van Gaalen JF; Kruse S; Lafrenz WB; Burroughs SM
    Ground Water; 2013; 51(3):350-62. PubMed ID: 22834892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping water table depth using geophysical and environmental variables.
    Buchanan S; Triantafilis J
    Ground Water; 2009; 47(1):80-96. PubMed ID: 18793206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of prediction methods for oxygen-18 isotope composition in shallow groundwater.
    Cerar S; Mezga K; Žibret G; Urbanc J; Komac M
    Sci Total Environ; 2018 Aug; 631-632():358-368. PubMed ID: 29529429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of nested flow models and interpolation techniques for science-based management of the Sheyenne National Grassland, North Dakota, USA.
    Gusyev MA; Haitjema HM; Carlson CP; Gonzalez MA
    Ground Water; 2013; 51(3):414-20. PubMed ID: 23013059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection of optimal auxiliary soil nutrient variables for Cokriging interpolation.
    Song G; Zhang J; Wang K
    PLoS One; 2014; 9(6):e99695. PubMed ID: 24927129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors affecting paddy soil arsenic concentration in Bangladesh: prediction and uncertainty of geostatistical risk mapping.
    Ahmed ZU; Panaullah GM; DeGloria SD; Duxbury JM
    Sci Total Environ; 2011 Dec; 412-413():324-35. PubMed ID: 22055452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A combined geostatistical approach of data fusion and stochastic simulation for probabilistic assessment of shallow water table depth risk.
    Manzione RL; Silva COF; Castrignanò A
    Sci Total Environ; 2021 Apr; 765():142743. PubMed ID: 33572040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial variability in the amount of forest litter at the local scale in northeastern China: Kriging and cokriging approaches to interpolation.
    Qin Q; Wang H; Lei X; Li X; Xie Y; Zheng Y
    Ecol Evol; 2020 Jan; 10(2):778-790. PubMed ID: 32015843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.