These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 22107357)

  • 21. Field-scale relationships among soil properties and shallow groundwater quality.
    Derby NE; Korom SF; Casey FX
    Ground Water; 2013; 51(3):373-84. PubMed ID: 22913586
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Geostatistical assessment of nitrate in groundwater of Puri City, India.
    Varma KN; Vijay R; Sohony RA
    J Environ Sci Eng; 2012 Apr; 54(2):227-33. PubMed ID: 24749374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantification of groundwater recharge in a hard rock terrain of Orissa: a case study.
    Sethi RR; Kumar A; Sharma SP
    Water Sci Technol; 2009; 60(5):1319-26. PubMed ID: 19717920
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Precision of spatial interpolation for forest duff layer depth based on secondary variable].
    Liu ZH; Chang Y; He HS; Chen HW
    Ying Yong Sheng Tai Xue Bao; 2009 Jan; 20(1):77-83. PubMed ID: 19449569
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Spatial variability of soil available potassium in rubber plantation based on coKriging].
    Feng JD; Wu BS; Wang JJ
    Ying Yong Sheng Tai Xue Bao; 2022 Apr; 33(4):915-921. PubMed ID: 35543042
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamic factor analysis of groundwater quality trends in an agricultural area adjacent to Everglades National Park.
    Muñoz-Carpena R; Ritter A; Li YC
    J Contam Hydrol; 2005 Nov; 80(1-2):49-70. PubMed ID: 16102872
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Categorical Indicator Kriging for assessing the risk of groundwater nitrate pollution: the case of Vega de Granada aquifer (SE Spain).
    Chica-Olmo M; Luque-Espinar JA; Rodriguez-Galiano V; Pardo-Igúzquiza E; Chica-Rivas L
    Sci Total Environ; 2014 Feb; 470-471():229-39. PubMed ID: 24140694
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kriging methods with auxiliary nighttime lights data to detect potentially toxic metals concentrations in soil.
    Zhen J; Pei T; Xie S
    Sci Total Environ; 2019 Apr; 659():363-371. PubMed ID: 30599355
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using multivariate geostatistics to assess patterns of spatial dependence of apparent soil electrical conductivity and selected soil properties.
    Siqueira GM; Dafonte JD; Valcárcel Armesto M; França e Silva ÊF
    ScientificWorldJournal; 2014; 2014():712403. PubMed ID: 25614893
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The critical role of local policy effects in arid watershed groundwater resources sustainability: A case study in the Minqin oasis, China.
    Hao Y; Xie Y; Ma J; Zhang W
    Sci Total Environ; 2017 Dec; 601-602():1084-1096. PubMed ID: 28599365
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Geostatistical interpolation model selection based on ArcGIS and spatio-temporal variability analysis of groundwater level in piedmont plains, northwest China.
    Xiao Y; Gu X; Yin S; Shao J; Cui Y; Zhang Q; Niu Y
    Springerplus; 2016; 5():425. PubMed ID: 27104113
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How processing digital elevation models can affect simulated water budgets.
    Kuniansky EL; Lowery MA; Campbell BG
    Ground Water; 2009; 47(1):97-107. PubMed ID: 18800972
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Higher order analytical solutions of water table fluctuations in coastal aquifers.
    Stojsavljevic JD; Jeng DS; Seymour BR; Pokrajac D
    Ground Water; 2012; 50(2):301-7. PubMed ID: 21517831
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mapping of spatial multi-scale sources of arsenic variation in groundwater on ChiaNan floodplain of Taiwan.
    Lin YB; Lin YP; Liu CW; Tan YC
    Sci Total Environ; 2006 Oct; 370(1):168-81. PubMed ID: 16904165
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of stochastic and deterministic methods for mapping groundwater level spatial variability in sparsely monitored basins.
    Varouchakis EA; Hristopulos DT
    Environ Monit Assess; 2013 Jan; 185(1):1-19. PubMed ID: 22311559
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computation of groundwater resources and recharge in Chithar River Basin, South India.
    Subramani T; Babu S; Elango L
    Environ Monit Assess; 2013 Jan; 185(1):983-94. PubMed ID: 22961326
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Movement of trichloroethene in a discontinuous permafrost zone.
    Carlson AE; Barnes DL
    J Contam Hydrol; 2011 Jun; 124(1-4):1-13. PubMed ID: 21382645
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatiotemporal modeling and prediction of soil heavy metals based on spatiotemporal cokriging.
    Zhang B; Yang Y
    Sci Rep; 2017 Dec; 7(1):16750. PubMed ID: 29196730
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Factors affecting nitrate distribution in shallow groundwater under a beef farm in south eastern Ireland.
    Fenton O; Richards KG; Kirwan L; Khalil MI; Healy MG
    J Environ Manage; 2009 Jul; 90(10):3135-46. PubMed ID: 19556054
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatial Prediction and Optimized Sampling Design for Sodium Concentration in Groundwater.
    Zahid E; Hussain I; Spöck G; Faisal M; Shabbir J; M AbdEl-Salam N; Hussain T
    PLoS One; 2016; 11(9):e0161810. PubMed ID: 27683016
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.