These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 22107389)

  • 41. Zeolite-Type Metal Oxalate Frameworks.
    Yi FY; Yang H; Zhao X; Feng P; Bu X
    Angew Chem Int Ed Engl; 2019 Feb; 58(9):2889-2892. PubMed ID: 30714291
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reactive oxygen species mediated DNA damage in human lung alveolar epithelial (A549) cells from exposure to non-cytotoxic MFI-type zeolite nanoparticles.
    Bhattacharya K; Naha PC; Naydenova I; Mintova S; Byrne HJ
    Toxicol Lett; 2012 Dec; 215(3):151-60. PubMed ID: 23103338
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rings and strain in pure silica zeolites.
    Sastre G; Corma A
    J Phys Chem B; 2006 Sep; 110(36):17949-59. PubMed ID: 16956286
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A facile strategy to design zeolite L crystals with tunable morphology and surface architecture.
    Lupulescu AI; Kumar M; Rimer JD
    J Am Chem Soc; 2013 May; 135(17):6608-17. PubMed ID: 23570284
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Entropy structural characterization of zeolites BCT and DFT with bond-wise scaled comparison.
    Arockiaraj M; Paul D; Ghani MU; Tigga S; Chu YM
    Sci Rep; 2023 Jul; 13(1):10874. PubMed ID: 37407626
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mimicking zeolite to its core: porous sodalite cages as hangers for pendant trimeric M3(OH) clusters (M = Mg, Mn, Co, Ni, Cd).
    Zheng ST; Wu T; Zuo F; Chou C; Feng P; Bu X
    J Am Chem Soc; 2012 Feb; 134(4):1934-7. PubMed ID: 22280215
    [TBL] [Abstract][Full Text] [Related]  

  • 47. EMM-23: a stable high-silica multidimensional zeolite with extra-large trilobe-shaped channels.
    Willhammar T; Burton AW; Yun Y; Sun J; Afeworki M; Strohmaier KG; Vroman H; Zou X
    J Am Chem Soc; 2014 Oct; 136(39):13570-3. PubMed ID: 25198917
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The properties of methylene- and amine-substituted zeolites from first principles.
    Astala R; Auerbach SM
    J Am Chem Soc; 2004 Feb; 126(6):1843-8. PubMed ID: 14871117
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Glycine canonical and zwitterionic isomers within zeolites.
    Yang G; Zhou L; Liu C
    J Phys Chem B; 2009 Jul; 113(30):10399-402. PubMed ID: 19719286
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sustainable synthesis of zeolites without addition of both organotemplates and solvents.
    Wu Q; Wang X; Qi G; Guo Q; Pan S; Meng X; Xu J; Deng F; Fan F; Feng Z; Li C; Maurer S; Müller U; Xiao FS
    J Am Chem Soc; 2014 Mar; 136(10):4019-25. PubMed ID: 24552214
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A simulated annealing approach for solving zeolite crystal structures from two-dimensional NMR correlation spectra.
    Brouwer DH; Horvath M
    Solid State Nucl Magn Reson; 2015 Feb; 65():89-98. PubMed ID: 25466355
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hydrogen storage in Chabazite zeolite frameworks.
    Regli L; Zecchina A; Vitillo JG; Cocina D; Spoto G; Lamberti C; Lillerud KP; Olsbye U; Bordiga S
    Phys Chem Chem Phys; 2005 Sep; 7(17):3197-203. PubMed ID: 16240032
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Predicting Structural Properties of Pure Silica Zeolites Using Deep Neural Network Potentials.
    Sours TG; Kulkarni AR
    J Phys Chem C Nanomater Interfaces; 2023 Jan; 127(3):1455-1463. PubMed ID: 36733763
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Detection of Brønsted acid sites in zeolite HY with high-field 17O-MAS-NMR techniques.
    Peng L; Liu Y; Kim N; Readman JE; Grey CP
    Nat Mater; 2005 Mar; 4(3):216-9. PubMed ID: 15711551
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Symmetry-based 29Si dipolar recoupling magic angle spinning NMR spectroscopy: a new method for investigating three-dimensional structures of zeolite frameworks.
    Brouwer DH; Kristiansen PE; Fyfe CA; Levitt MH
    J Am Chem Soc; 2005 Jan; 127(2):542-3. PubMed ID: 15643876
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular dynamics studies of nanoconfined water in clinoptilolite and heulandite zeolites.
    Ockwig NW; Cygan RT; Criscenti LJ; Nenoff TM
    Phys Chem Chem Phys; 2008 Feb; 10(6):800-7. PubMed ID: 18231682
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Beryllosilicate frameworks and zeolites.
    Armstrong JA; Weller MT
    J Am Chem Soc; 2010 Nov; 132(44):15679-86. PubMed ID: 20949941
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optimal machine learning feature selection for assessing the mechanical properties of a zeolite framework.
    Kim N; Min K
    Phys Chem Chem Phys; 2022 Nov; 24(44):27031-27037. PubMed ID: 36189494
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Generating triply periodic surfaces from crystal structures: the tiling approach and its application to zeolites.
    Smolkov MI; Blatova OA; Krutov AF; Blatov VA
    Acta Crystallogr A Found Adv; 2022 Jul; 78(Pt 4):327-336. PubMed ID: 35781413
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Removal of Ca2+ and Zn2+ from aqueous solutions by zeolites NaP and KP.
    Yusof AM; Malek NA; Kamaruzaman NA; Adil M
    Environ Technol; 2010 Jan; 31(1):41-6. PubMed ID: 20232677
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.