These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 22107400)

  • 41. Spin-wave energy dispersion of a frustrated spin-½ Heisenberg antiferromagnet on a stacked square lattice.
    Majumdar K
    J Phys Condens Matter; 2011 Mar; 23(11):116004. PubMed ID: 21368361
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metastable superfluidity of repulsive fermionic atoms in optical lattices.
    Rosch A; Rasch D; Binz B; Vojta M
    Phys Rev Lett; 2008 Dec; 101(26):265301. PubMed ID: 19437648
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Third-neighbor correlators of a one-dimensional spin-1/2 Heisenberg antiferromagnet.
    Sakai K; Shiroishi M; Nishiyama Y; Takahashi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):065101. PubMed ID: 16241286
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantum J1-J2 antiferromagnet on a stacked square lattice: influence of the interlayer coupling on the ground-state magnetic ordering.
    Schmalfuss D; Darradi R; Richter J; Schulenburg J; Ihle D
    Phys Rev Lett; 2006 Oct; 97(15):157201. PubMed ID: 17155352
    [TBL] [Abstract][Full Text] [Related]  

  • 45. d-Wave resonating valence bond states of fermionic atoms in optical lattices.
    Trebst S; Schollwöck U; Troyer M; Zoller P
    Phys Rev Lett; 2006 Jun; 96(25):250402. PubMed ID: 16907290
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lower bounds on the ground-state entropy of the Potts antiferromagnet on slabs of the simple cubic lattice.
    Shrock R; Xu Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031134. PubMed ID: 20365724
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Trapped Fermi gases in rotating optical lattices: realization and detection of the topological hofstadter insulator.
    Umucalilar RO; Zhai H; Oktel MO
    Phys Rev Lett; 2008 Feb; 100(7):070402. PubMed ID: 18352527
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Deconfinement in a 2D optical lattice of coupled 1D boson systems.
    Ho AF; Cazalilla MA; Giamarchi T
    Phys Rev Lett; 2004 Apr; 92(13):130405. PubMed ID: 15089589
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chiral Kosterlitz-Thouless transition in the frustrated Heisenberg antiferromagnet on a pyrochlore slab.
    Kawamura H; Arimori T
    Phys Rev Lett; 2002 Feb; 88(7):077202. PubMed ID: 11863933
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Helical Floquet Channels in 1D Lattices.
    Budich JC; Hu Y; Zoller P
    Phys Rev Lett; 2017 Mar; 118(10):105302. PubMed ID: 28339252
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interaction-Driven Topological Insulator in Fermionic Cold Atoms on an Optical Lattice: A Design with a Density Functional Formalism.
    Kitamura S; Tsuji N; Aoki H
    Phys Rev Lett; 2015 Jul; 115(4):045304. PubMed ID: 26252693
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Superfluid-insulator transition in a periodically driven optical lattice.
    Eckardt A; Weiss C; Holthaus M
    Phys Rev Lett; 2005 Dec; 95(26):260404. PubMed ID: 16486320
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantum versus geometric disorder in a two-dimensional Heisenberg antiferromagnet.
    Vajk OP; Greven M
    Phys Rev Lett; 2002 Oct; 89(17):177202. PubMed ID: 12398702
    [TBL] [Abstract][Full Text] [Related]  

  • 54. FFLO order in ultra-cold atoms in three-dimensional optical lattices.
    Rosenberg P; Chiesa S; Zhang S
    J Phys Condens Matter; 2015 Jun; 27(22):225601. PubMed ID: 25984657
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Triangular antiferromagnet with nonmagnetic impurities.
    Maryasin VS; Zhitomirsky ME
    Phys Rev Lett; 2013 Dec; 111(24):247201. PubMed ID: 24483694
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Magnetization process and collective excitations in the S=1/2 triangular-lattice Heisenberg antiferromagnet Ba3CoSb2O9.
    Susuki T; Kurita N; Tanaka T; Nojiri H; Matsuo A; Kindo K; Tanaka H
    Phys Rev Lett; 2013 Jun; 110(26):267201. PubMed ID: 23848914
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Deconfined criticality in the frustrated Heisenberg honeycomb antiferromagnet.
    Ganesh R; van den Brink J; Nishimoto S
    Phys Rev Lett; 2013 Mar; 110(12):127203. PubMed ID: 25166838
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Diffraction by a frustrated system: the triangular Ising antiferromagnet.
    Yoon C; Millane RP
    J Opt Soc Am A Opt Image Sci Vis; 2014 Jul; 31(7):1416-26. PubMed ID: 25121427
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nonequivalence of ensembles for long-range quantum spin systems in optical lattices.
    Kastner M
    Phys Rev Lett; 2010 Jun; 104(24):240403. PubMed ID: 20867283
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quantum effects in a weakly frustrated s=1/2 two-dimensional heisenberg antiferromagnet in an applied magnetic field.
    Tsyrulin N; Pardini T; Singh RR; Xiao F; Link P; Schneidewind A; Hiess A; Landee CP; Turnbull MM; Kenzelmann M
    Phys Rev Lett; 2009 May; 102(19):197201. PubMed ID: 19518991
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.