These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 22107413)

  • 1. Dark-bright mixing of interband transitions in symmetric semiconductor quantum dots.
    Sallen G; Urbaszek B; Glazov MM; Ivchenko EL; Kuroda T; Mano T; Kunz S; Abbarchi M; Sakoda K; Lagarde D; Balocchi A; Marie X; Amand T
    Phys Rev Lett; 2011 Oct; 107(16):166604. PubMed ID: 22107413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fine structure of highly charged excitons in semiconductor quantum dots.
    Urbaszek B; Warburton RJ; Karrai K; Gerardot BD; Petroff PM; Garcia JM
    Phys Rev Lett; 2003 Jun; 90(24):247403. PubMed ID: 12857227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fine Structure of Nearly Isotropic Bright Excitons in InP/ZnSe Colloidal Quantum Dots.
    Brodu A; Chandrasekaran V; Scarpelli L; Buhot J; Masia F; Ballottin MV; Severijnen M; Tessier MD; Dupont D; Rabouw FT; Christianen PCM; de Mello Donega C; Vanmaekelbergh D; Langbein W; Hens Z
    J Phys Chem Lett; 2019 Sep; 10(18):5468-5475. PubMed ID: 31424940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sub-picosecond spin relaxation of bright excitons and imbalance suppression in asymmetric Cdse/Zns nanocrystal quantum dots under an applied magnetic field.
    Kyhm K; Kim J; Yang HS; Je KC; Murayama A
    J Nanosci Nanotechnol; 2012 Mar; 12(3):2919-23. PubMed ID: 22755142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fine structure of excitons in InAs/GaAs coupled auantum dots: a sensitive test of electronic coupling.
    Ortner G; Bayer M; Larionov A; Timofeev VB; Forchel A; Lyanda-Geller YB; Reinecke TL; Hawrylak P; Fafard S; Wasilewski Z
    Phys Rev Lett; 2003 Feb; 90(8):086404. PubMed ID: 12633447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interplay of Bright Triplet and Dark Excitons Revealed by Magneto-Photoluminescence of Individual PbS/CdS Quantum Dots.
    Kim Y; Hu Z; Avdeev ID; Singh A; Singh A; Chandrasekaran V; Nestoklon MO; Goupalov SV; Hollingsworth JA; Htoon H
    Small; 2021 Apr; 17(13):e2006977. PubMed ID: 33690965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of bright and dark excitons in the temperature-dependent photoluminescence of carbon nanotubes.
    Mortimer IB; Nicholas RJ
    Phys Rev Lett; 2007 Jan; 98(2):027404. PubMed ID: 17358649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature and magnetic-field dependence of radiative decay in colloidal germanium quantum dots.
    Robel I; Shabaev A; Lee DC; Schaller RD; Pietryga JM; Crooker SA; L Efros A; Klimov VI
    Nano Lett; 2015 Apr; 15(4):2685-92. PubMed ID: 25793644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarization Anisotropies in Strain-Free, Asymmetric, and Symmetric Quantum Dots Grown by Droplet Epitaxy.
    Abbarchi M; Mano T; Kuroda T; Ohtake A; Sakoda K
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33578657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dot-Size Dependent Excitons in Droplet-Etched Cone-Shell GaAs Quantum Dots.
    Heyn C; Gräfenstein A; Pirard G; Ranasinghe L; Deneke K; Alshaikh A; Bester G; Hansen W
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36080018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct measurement of the hole-nuclear spin interaction in single InP/GaInP quantum dots using photoluminescence spectroscopy.
    Chekhovich EA; Krysa AB; Skolnick MS; Tartakovskii AI
    Phys Rev Lett; 2011 Jan; 106(2):027402. PubMed ID: 21405250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bright and dark excitons in semiconductor carbon nanotubes: insights from electronic structure calculations.
    Kilina S; Badaeva E; Piryatinski A; Tretiak S; Saxena A; Bishop AR
    Phys Chem Chem Phys; 2009 Jun; 11(21):4113-23. PubMed ID: 19458812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lattice Disorder-Engineered Energy Splitting between Bright and Dark Excitons in CsPbBr
    Ding H; Liu M; Pan N; Dong Y; Lin Y; Li T; Zhao J; Luo Z; Luo Y; Wang X
    J Phys Chem Lett; 2019 Mar; 10(6):1355-1360. PubMed ID: 30841698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical control of the exciton fine structure of a quantum dot molecule.
    Sköld N; Boyer de la Giroday A; Bennett AJ; Farrer I; Ritchie DA; Shields AJ
    Phys Rev Lett; 2013 Jan; 110(1):016804. PubMed ID: 23383823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exciton Fine Structure in Lead Chalcogenide Quantum Dots: Valley Mixing and Crucial Role of Intervalley Electron-Hole Exchange.
    Avdeev ID; Nestoklon MO; Goupalov SV
    Nano Lett; 2020 Dec; 20(12):8897-8902. PubMed ID: 33170719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct observation of dark excitons in individual carbon nanotubes: inhomogeneity in the exchange splitting.
    Srivastava A; Htoon H; Klimov VI; Kono J
    Phys Rev Lett; 2008 Aug; 101(8):087402. PubMed ID: 18764659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fine structure of negatively and positively charged excitons in semiconductor quantum dots: electron-hole asymmetry.
    Ediger M; Bester G; Gerardot BD; Badolato A; Petroff PM; Karrai K; Zunger A; Warburton RJ
    Phys Rev Lett; 2007 Jan; 98(3):036808. PubMed ID: 17358715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron and nuclear spin interactions in the optical spectra of single GaAs quantum dots.
    Gammon D; Efros AL; Kennedy TA; Rosen M; Katzer DS; Park D; Brown SW; Korenev VL; Merkulov IA
    Phys Rev Lett; 2001 May; 86(22):5176-9. PubMed ID: 11384450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry.
    Trotta R; Zallo E; Ortix C; Atkinson P; Plumhof JD; van den Brink J; Rastelli A; Schmidt OG
    Phys Rev Lett; 2012 Oct; 109(14):147401. PubMed ID: 23083282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of applied magnetic fields on the optical properties of zero- and one-dimensional CdSe nanocrystals.
    Blumling DE; McGill S; Knappenberger KL
    Nanoscale; 2013 Oct; 5(19):9049-56. PubMed ID: 23945622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.