BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 22107594)

  • 21. Cell death activation during cavitation of embryoid bodies is mediated by hydrogen peroxide.
    Hernández-García D; Castro-Obregón S; Gómez-López S; Valencia C; Covarrubias L
    Exp Cell Res; 2008 Jun; 314(10):2090-9. PubMed ID: 18452915
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of co-exposure of benzene, toluene and xylene to Drosophila melanogaster: alteration in hsp70, hsp60, hsp83, hsp26, ROS generation and oxidative stress markers.
    Singh MP; Ram KR; Mishra M; Shrivastava M; Saxena DK; Chowdhuri DK
    Chemosphere; 2010 Apr; 79(5):577-87. PubMed ID: 20188393
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Age-related deficits in long-term potentiation are insensitive to hydrogen peroxide: coincidence with enhanced autophosphorylation of Ca2+/calmodulin-dependent protein kinase II.
    Watson JB; Khorasani H; Persson A; Huang KP; Huang FL; O'Dell TJ
    J Neurosci Res; 2002 Nov; 70(3):298-308. PubMed ID: 12391589
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sex differences in survival and mitochondrial bioenergetics during aging in Drosophila.
    Ballard JW; Melvin RG; Miller JT; Katewa SD
    Aging Cell; 2007 Oct; 6(5):699-708. PubMed ID: 17725690
    [TBL] [Abstract][Full Text] [Related]  

  • 25. G(o) activation is required for both appetitive and aversive memory acquisition in Drosophila.
    Madalan A; Yang X; Ferris J; Zhang S; Roman G
    Learn Mem; 2012 Jan; 19(1):26-34. PubMed ID: 22190729
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxidative stress and aging: is methylglyoxal the hidden enemy?
    Desai KM; Chang T; Wang H; Banigesh A; Dhar A; Liu J; Untereiner A; Wu L
    Can J Physiol Pharmacol; 2010 Mar; 88(3):273-84. PubMed ID: 20393592
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A correlation of reactive oxygen species accumulation by depletion of superoxide dismutases with age-dependent impairment in the nervous system and muscles of Drosophila adults.
    Oka S; Hirai J; Yasukawa T; Nakahara Y; Inoue YH
    Biogerontology; 2015 Aug; 16(4):485-501. PubMed ID: 25801590
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Learning and memory deficits upon TAU accumulation in Drosophila mushroom body neurons.
    Mershin A; Pavlopoulos E; Fitch O; Braden BC; Nanopoulos DV; Skoulakis EM
    Learn Mem; 2004; 11(3):277-87. PubMed ID: 15169857
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of reactive oxygen species on amphibian aging.
    Kashiwagi K; Shinkai T; Kajii E; Kashiwagi A
    Comp Biochem Physiol C Toxicol Pharmacol; 2005 Feb; 140(2):197-205. PubMed ID: 15907765
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antioxidant enzyme activity and oxidative stress in bovine oocyte in vitro maturation.
    Cetica PD; Pintos LN; Dalvit GC; Beconi MT
    IUBMB Life; 2001 Jan; 51(1):57-64. PubMed ID: 11419698
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exogenous catalase may potentiate oxidant-mediated lung injury in the female Sprague-Dawley rat.
    Lardot C; Broeckaert F; Lison D; Buchet JP; Lauwerys R
    J Toxicol Environ Health; 1996 Apr; 47(6):509-22. PubMed ID: 8614020
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production.
    Trifunovic A; Hansson A; Wredenberg A; Rovio AT; Dufour E; Khvorostov I; Spelbrink JN; Wibom R; Jacobs HT; Larsson NG
    Proc Natl Acad Sci U S A; 2005 Dec; 102(50):17993-8. PubMed ID: 16332961
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Free radicals and brain aging.
    Poon HF; Calabrese V; Scapagnini G; Butterfield DA
    Clin Geriatr Med; 2004 May; 20(2):329-59. PubMed ID: 15182885
    [TBL] [Abstract][Full Text] [Related]  

  • 34. alpha-keto-beta-methyl-n-valeric acid diminishes reactive oxygen species and alters endoplasmic reticulum Ca(2+) stores.
    Huang HM; Zhang H; Ou HC; Chen HL; Gibson GE
    Free Radic Biol Med; 2004 Dec; 37(11):1779-89. PubMed ID: 15528037
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Age-related memory vulnerability to interfering stimuli is caused by gradual loss of MAPK-dependent protection in Drosophila.
    Mo H; Wang L; Chen Y; Zhang X; Huang N; Liu T; Hu W; Zhong Y; Li Q
    Aging Cell; 2022 Jun; 21(6):e13628. PubMed ID: 35570367
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cells discover fire: employing reactive oxygen species in development and consequences for aging.
    de Magalhães JP; Church GM
    Exp Gerontol; 2006 Jan; 41(1):1-10. PubMed ID: 16226003
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acute inhibition of PKA activity at old ages ameliorates age-related memory impairment in Drosophila.
    Yamazaki D; Horiuchi J; Miyashita T; Saitoe M
    J Neurosci; 2010 Nov; 30(46):15573-7. PubMed ID: 21084612
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous age-related depolarization of mitochondrial membrane potential and increased mitochondrial reactive oxygen species production correlate with age-related glutamate excitotoxicity in rat hippocampal neurons.
    Parihar MS; Brewer GJ
    J Neurosci Res; 2007 Apr; 85(5):1018-32. PubMed ID: 17335078
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Disruption of alternative NAD(P)H dehydrogenases leads to decreased mitochondrial ROS in Neurospora crassa.
    Carneiro P; Duarte M; Videira A
    Free Radic Biol Med; 2012 Jan; 52(2):402-9. PubMed ID: 22100504
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Drosophila melanogaster mitochondrial Hsp22: a role in resistance to oxidative stress, aging and the mitochondrial unfolding protein response.
    Morrow G; Le Pécheur M; Tanguay RM
    Biogerontology; 2016 Feb; 17(1):61-70. PubMed ID: 26155908
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.