BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 22107907)

  • 1. Changes in ultrasonic properties of liver tissue in vitro during heating-cooling cycle concomitant with thermal coagulation.
    Choi MJ; Guntur SR; Lee JM; Paeng DG; Lee KI; Coleman A
    Ultrasound Med Biol; 2011 Dec; 37(12):2000-12. PubMed ID: 22107907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in backscatter of liver tissue due to thermal coagulation induced by focused ultrasound.
    Shishitani T; Matsuzawa R; Yoshizawa S; Umemura S
    J Acoust Soc Am; 2013 Aug; 134(2):1724-30. PubMed ID: 23927213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining temperature distribution in tissue in the focal plane of the high (>100 W/cm(2)) intensity focused ultrasound beam using phase shift of ultrasound echoes.
    Karwat P; Kujawska T; Lewin PA; Secomski W; Gambin B; Litniewski J
    Ultrasonics; 2016 Feb; 65():211-9. PubMed ID: 26498063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasound properties of liver tissue during heating.
    Gertner MR; Wilson BC; Sherar MD
    Ultrasound Med Biol; 1997; 23(9):1395-403. PubMed ID: 9428138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasonic Nakagami Imaging of High-intensity Focused Ultrasound-induced Thermal Lesions in Porcine Livers: Ex Vivo Study.
    Huang SM; Liu HL; Li DW; Li ML
    Ultrason Imaging; 2018 Sep; 40(5):310-324. PubMed ID: 29857786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and characterization of a tissue-mimicking material for high-intensity focused ultrasound.
    King RL; Liu Y; Maruvada S; Herman BA; Wear KA; Harris GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1397-405. PubMed ID: 21768024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The changes in acoustic attenuation due to in vitro heating.
    Clarke RL; Bush NL; Ter Haar GR
    Ultrasound Med Biol; 2003 Jan; 29(1):127-35. PubMed ID: 12604124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-dependent thermal properties of ex vivo liver undergoing thermal ablation.
    Guntur SR; Lee KI; Paeng DG; Coleman AJ; Choi MJ
    Ultrasound Med Biol; 2013 Oct; 39(10):1771-84. PubMed ID: 23932271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature dependence of ultrasonic propagation speed and attenuation in canine tissue.
    Techavipoo U; Varghese T; Zagzebski JA; Stiles T; Frank G
    Ultrason Imaging; 2002 Oct; 24(4):246-60. PubMed ID: 12665240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative ultrasound techniques for assessing thermal ablation: Measurement of the backscatter coefficient from ex vivo human liver.
    Rohfritsch A; Franceschini E; Dupré A; Melodelima D
    Med Phys; 2023 Nov; 50(11):6908-6919. PubMed ID: 37769022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasonic assessment of thermal therapy in rat liver.
    Kemmerer JP; Oelze ML
    Ultrasound Med Biol; 2012 Dec; 38(12):2130-7. PubMed ID: 23062365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear acoustic properties of ex vivo bovine liver and the effects of temperature and denaturation.
    Jackson EJ; Coussios CC; Cleveland RO
    Phys Med Biol; 2014 Jun; 59(12):3223-38. PubMed ID: 24862475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasound applicators with internal water-cooling for high-powered interstitial thermal therapy.
    Deardorff DL; Diederich CJ
    IEEE Trans Biomed Eng; 2000 Oct; 47(10):1356-65. PubMed ID: 11059170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-invasive Measurement of Thermal Diffusivity Using High-Intensity Focused Ultrasound and Through-Transmission Ultrasonic Imaging.
    Yeshurun L; Azhari H
    Ultrasound Med Biol; 2016 Jan; 42(1):243-56. PubMed ID: 26489364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and characterization of a blood mimicking fluid for high intensity focused ultrasound.
    Liu Y; Maruvada S; King RL; Herman BA; Wear KA
    J Acoust Soc Am; 2008 Sep; 124(3):1803-10. PubMed ID: 19045670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in ultrasound properties of porcine kidney tissue during heating.
    Worthington AE; Sherar MD
    Ultrasound Med Biol; 2001 May; 27(5):673-82. PubMed ID: 11397532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A non-exothermic cell-embedding tissue-mimicking material for studies of ultrasound-induced hyperthermia and drug release.
    Mylonopoulou E; Bazán-Peregrino M; Arvanitis CD; Coussios CC
    Int J Hyperthermia; 2013; 29(2):133-44. PubMed ID: 23406389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calibration of ultrasound backscatter temperature imaging for high-intensity focused ultrasound treatment planning.
    Civale J; Rivens I; Ter Haar G; Morris H; Coussios C; Friend P; Bamber J
    Ultrasound Med Biol; 2013 Sep; 39(9):1596-612. PubMed ID: 23830100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal properties and changes of acoustic parameters in an egg white phantom during heating and coagulation by high intensity focused ultrasound.
    Divkovic GW; Liebler M; Braun K; Dreyer T; Huber PE; Jenne JW
    Ultrasound Med Biol; 2007 Jun; 33(6):981-6. PubMed ID: 17434665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time monitoring of high-intensity focused ultrasound ablations with photoacoustic technique: an in vitro study.
    Cui H; Yang X
    Med Phys; 2011 Oct; 38(10):5345-50. PubMed ID: 21992353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.