These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 221084)

  • 21. [Absorption and magnetic circular dichroism spectra of nonequilibrium states of hemoproteins. III. Complexes of peroxidase].
    Magonov SN; Davydov RM; Bliumenfel'd LA; Arutiunian AM; Sharonov IuA
    Mol Biol (Mosk); 1978; 12(5):1191-7. PubMed ID: 740001
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anion binding to resting and half-reduced Pseudomonas cytochrome c peroxidase.
    Ellfolk N; Rönnberg M; Aasa R; Andréasson LE; Vänngård T
    Biochim Biophys Acta; 1984 Jan; 784(1):62-7. PubMed ID: 6318831
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluoride and formate interaction with liver and erythrocyte catalases as revealed by solvent-proton magnetic relaxation.
    Vuk-Pavlović S; Williams-Smith DL
    Biochemistry; 1977 Dec; 16(25):5465-70. PubMed ID: 200261
    [No Abstract]   [Full Text] [Related]  

  • 24. Magnetic circular dichroism studies of bovine liver catalase.
    Browett WR; Stillman MJ
    Biochim Biophys Acta; 1979 Apr; 577(2):291-306. PubMed ID: 36920
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spectroscopic studies of protein-heme interactions accompanying the allosteric transition in methemoglobins.
    Henry ER; Rousseau DL; Hopfield JJ; Noble RW; Simon SR
    Biochemistry; 1985 Oct; 24(21):5907-18. PubMed ID: 4084499
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ISOLATION AND CHARACTERIZATION OF THE CYANIDE-RESISTANT AND AZIDE-RESISTANT CATALASE OF LACTOBACILLUS PLANTARUM.
    JOHNSTON MA; DELWICHE EA
    J Bacteriol; 1965 Aug; 90(2):352-6. PubMed ID: 14329447
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Azide- and cyanide-binding to the Escherichia coli bd-type ubiquinol oxidase studied by visible absorption, EPR and FTIR spectroscopies.
    Tsubaki M; Mogi T; Hori H
    J Biochem; 1999 Sep; 126(3):510-9. PubMed ID: 10467166
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heme-linked spectral changes of the protein moiety of hemoproteins in the near ultraviolet region.
    Horie S; Hasumi H; Takizawa N
    J Biochem; 1985 Jan; 97(1):281-93. PubMed ID: 2987198
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prosthetic group content and ligand binding properties of a spinach catalase.
    Hirasawa M; Gray KA; Ondrias MR; Larsen RW; Shaw RW; Morrow KJ; Knaff DB
    Biochim Biophys Acta; 1989 Feb; 994(3):229-34. PubMed ID: 2537661
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Solution studies on heme proteins. Circular dichroism and optical rotation of Glycera dibranchiata hemoglobins.
    O'Connor ER; Harrington JP; Herskovits TT
    Biochim Biophys Acta; 1980 Aug; 624(2):346-62. PubMed ID: 6251898
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of pH on the optical absorption spectrum and effective number of the Bohr magneton of horse erythrocyte catalase in the range from 77 degrees K to 267 degrees K.
    Yoshida K; Iizuka T; Ogura Y
    J Biochem; 1970 Dec; 68(6):849-57. PubMed ID: 4322321
    [No Abstract]   [Full Text] [Related]  

  • 32. The interactions of thiol compounds with porcine erythrocyte catalase.
    Takeda A; Miyahara T; Hachimori A; Samejima T
    J Biochem; 1980 Feb; 87(2):429-39. PubMed ID: 7358647
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the molecular conformation of human haemopexin. II. Analysis of circular dichroic spectra.
    Kodícek M; Hrkal Z; Vodráska Z
    Biochim Biophys Acta; 1977 Dec; 495(2):268-78. PubMed ID: 588585
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetic circular dichroism studies on horseradish peroxidase.
    Nozawa T; Kobayashi N; Hatano M
    Biochim Biophys Acta; 1976 Apr; 427(2):652-62. PubMed ID: 1268223
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spectral studies of iron coordination in hemeprotein complexes: difference spectroscopy below 250 millimicrons.
    Brill AS; Sandberg HE
    Biophys J; 1968 Jun; 8(6):669-90. PubMed ID: 5699802
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the acid denaturation of porcine erythrocyte catalase in relation to its subunit structure.
    Samejima T; Miyahara T; Takeda A; Hachimori A; Hirano K
    J Biochem; 1981 Apr; 89(4):1325-32. PubMed ID: 7251583
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure of milk lactoperoxidase. A study using circular dichroism and difference absorption spectroscopy.
    Sievers G
    Biochim Biophys Acta; 1980 Jul; 624(1):249-59. PubMed ID: 7407237
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optical and magnetic resonance studies of formate binding to horse liver catalase and sperm whale myoglobin.
    Hershberg RD; Chance B
    Biochemistry; 1975 Aug; 14(17):3885-91. PubMed ID: 169890
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heme-spin-label studies on human hemoglobin.
    Asakura T
    Ann N Y Acad Sci; 1973 Dec; 222():68-85. PubMed ID: 4361878
    [No Abstract]   [Full Text] [Related]  

  • 40. The Met243 sulfonium ion linkage is responsible for the anomalous magnetic circular dichroism and optical spectral properties of myeloperoxidase.
    Kooter IM; Koehler BP; Moguilevsky N; Bollen A; Wever R; Johnson MK
    J Biol Inorg Chem; 1999 Dec; 4(6):684-91. PubMed ID: 10631599
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.