These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 22108549)
1. Divergent mechanisms involved in CO and CORM-2 induced vasorelaxation. Decaluwé K; Pauwels B; Verpoest S; Van de Voorde J Eur J Pharmacol; 2012 Jan; 674(2-3):370-7. PubMed ID: 22108549 [TBL] [Abstract][Full Text] [Related]
2. Relaxant effect of a water soluble carbon monoxide-releasing molecule (CORM-3) on spontaneously hypertensive rat aortas. Failli P; Vannacci A; Di Cesare Mannelli L; Motterlini R; Masini E Cardiovasc Drugs Ther; 2012 Aug; 26(4):285-92. PubMed ID: 22766583 [TBL] [Abstract][Full Text] [Related]
3. Mechanisms of the vasorelaxing effects of CORM-3, a water-soluble carbon monoxide-releasing molecule: interactions with eNOS. Alshehri A; Bourguignon MP; Clavreul N; Badier-Commander C; Gosgnach W; Simonet S; Vayssettes-Courchay C; Cordi A; Fabiani JN; Verbeuren TJ; Félétou M Naunyn Schmiedebergs Arch Pharmacol; 2013 Mar; 386(3):185-96. PubMed ID: 23296254 [TBL] [Abstract][Full Text] [Related]
4. Vasoactive properties of CORM-3, a novel water-soluble carbon monoxide-releasing molecule. Foresti R; Hammad J; Clark JE; Johnson TR; Mann BE; Friebe A; Green CJ; Motterlini R Br J Pharmacol; 2004 Jun; 142(3):453-60. PubMed ID: 15148243 [TBL] [Abstract][Full Text] [Related]
5. Divergent molecular mechanisms underlay CO- and CORM-2-induced relaxation of corpora cavernosa. Decaluwé K; Pauwels B; Boydens C; Van de Voorde J J Sex Med; 2012 Sep; 9(9):2284-92. PubMed ID: 22759233 [TBL] [Abstract][Full Text] [Related]
6. Effects of carbon monoxide on trout and lamprey vessels. Dombkowski RA; Whitfield NL; Motterlini R; Gao Y; Olson KR Am J Physiol Regul Integr Comp Physiol; 2009 Jan; 296(1):R141-9. PubMed ID: 19005018 [TBL] [Abstract][Full Text] [Related]
7. Mechanisms of relaxation by carbon monoxide-releasing molecule-2 in murine gastric fundus and jejunum. De Backer O; Lefebvre RA Eur J Pharmacol; 2007 Oct; 572(2-3):197-206. PubMed ID: 17610869 [TBL] [Abstract][Full Text] [Related]
8. Carbon monoxide released by CORM-3 inhibits human platelets by a mechanism independent of soluble guanylate cyclase. Chlopicki S; Olszanecki R; Marcinkiewicz E; Lomnicka M; Motterlini R Cardiovasc Res; 2006 Jul; 71(2):393-401. PubMed ID: 16713591 [TBL] [Abstract][Full Text] [Related]
9. Role of the soluble guanylyl cyclase alpha1/alpha2 subunits in the relaxant effect of CO and CORM-2 in murine gastric fundus. De Backer O; Elinck E; Sips P; Buys E; Brouckaert P; Lefebvre RA Naunyn Schmiedebergs Arch Pharmacol; 2008 Nov; 378(5):493-502. PubMed ID: 18563392 [TBL] [Abstract][Full Text] [Related]
10. Interaction between endogenously produced carbon monoxide and nitric oxide in regulation of renal afferent arterioles. Botros FT; Navar LG Am J Physiol Heart Circ Physiol; 2006 Dec; 291(6):H2772-8. PubMed ID: 16844915 [TBL] [Abstract][Full Text] [Related]
11. Kv channels contribute to nitric oxide- and atrial natriuretic peptide-induced relaxation of a rat conduit artery. Tanaka Y; Tang G; Takizawa K; Otsuka K; Eghbali M; Song M; Nishimaru K; Shigenobu K; Koike K; Stefani E; Toro L J Pharmacol Exp Ther; 2006 Apr; 317(1):341-54. PubMed ID: 16394199 [TBL] [Abstract][Full Text] [Related]
12. The mechanism of vasorelaxation induced by ethanol extract of Sophora flavescens in rat aorta. Jin SN; Wen JF; Li X; Kang DG; Lee HS; Cho KW J Ethnopharmacol; 2011 Sep; 137(1):547-52. PubMed ID: 21704693 [TBL] [Abstract][Full Text] [Related]
13. The new NO donor Terpy induces similar relaxation in mesenteric resistance arteries of renal hypertensive and normotensive rats. Araújo AV; Pereira AC; Grando MD; da Silva RS; Bendhack LM Nitric Oxide; 2013 Nov; 35():47-53. PubMed ID: 23968803 [TBL] [Abstract][Full Text] [Related]
14. Investigation into the mechanism(s) of antithrombotic effects of carbon monoxide releasing molecule-3 (CORM-3). Soni H; Jain M; Mehta AA Thromb Res; 2011 Jun; 127(6):551-9. PubMed ID: 21376373 [TBL] [Abstract][Full Text] [Related]
15. Renal vascular responses to CORM-A1 in the mouse. Ryan MJ; Jernigan NL; Drummond HA; McLemore GR; Rimoldi JM; Poreddy SR; Gadepalli RS; Stec DE Pharmacol Res; 2006 Jul; 54(1):24-9. PubMed ID: 16524742 [TBL] [Abstract][Full Text] [Related]
16. Nitric oxide suppresses cerebral vasomotion by sGC-independent effects on ryanodine receptors and voltage-gated calcium channels. Yuill KH; McNeish AJ; Kansui Y; Garland CJ; Dora KA J Vasc Res; 2010; 47(2):93-107. PubMed ID: 19729956 [TBL] [Abstract][Full Text] [Related]
18. The role of NO-cGMP pathway and potassium channels on the relaxation induced by clonidine in the rat mesenteric arterial bed. Pimentel AM; Costa CA; Carvalho LC; Brandão RM; Rangel BM; Tano T; Soares de Moura R; Resende AC Vascul Pharmacol; 2007 May; 46(5):353-9. PubMed ID: 17258511 [TBL] [Abstract][Full Text] [Related]
19. Linalool elicits vasorelaxation of mouse aortae through activation of guanylyl cyclase and K(+) channels. Kang P; Seol GH J Pharm Pharmacol; 2015 May; 67(5):714-9. PubMed ID: 25623816 [TBL] [Abstract][Full Text] [Related]
20. Nitric oxide generated by the compound RuBPY promotes the vascular smooth cell membrane hyperpolarization. Pereira AC; Lunardi CN; Paulo M; da Silva RS; Bendhack LM Eur J Pharm Sci; 2013 Mar; 48(4-5):604-10. PubMed ID: 23333503 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]