These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 22108760)

  • 1. High-voltage nano-oxidation in deionized water and atmospheric environments by atomic force microscopy.
    Huang JC; Chen CM
    Scanning; 2012; 34(4):230-6. PubMed ID: 22108760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The study on the atomic force microscopy base nanoscale electrical discharge machining.
    Huang JC; Chen CM
    Scanning; 2012; 34(3):191-9. PubMed ID: 21898457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabricating nanostructures through a combination of nano-oxidation and wet etching on silicon wafers with different surface conditions.
    Huang JC
    Scanning; 2012; 34(4):264-70. PubMed ID: 22331692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the tip-sample contact force on the nanostructure size fabricated by local oxidation nanolithography.
    Hu K; Wu S; Huang M; Hu X; Wang Q
    Ultramicroscopy; 2012 Apr; 115():7-13. PubMed ID: 22446199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of nanoscale recording mark on Ge2Sb2Te5 film.
    Kim J; Kwon MH; Song KB
    Ultramicroscopy; 2008 Sep; 108(10):1246-50. PubMed ID: 18572324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High aspect ratio AFM Probe processing by helium-ion-beam induced deposition.
    Onishi K; Guo H; Nagano S; Fujita D
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i30. PubMed ID: 25359832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controllable formation of nanoscale patterns on TiO2 by conductive-AFM nanolithography.
    Garipcan B; Winters J; Atchison JS; Cathell MD; Schiffman JD; Leaffer OD; Nonnenmann SS; Schauer CL; Pişkin E; Nabet B; Spanier JE
    Langmuir; 2008 Aug; 24(16):8944-9. PubMed ID: 18646874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic force microscopy with nanoelectrode tips for high resolution electrochemical, nanoadhesion and nanoelectrical imaging.
    Nellist MR; Chen Y; Mark A; Gödrich S; Stelling C; Jiang J; Poddar R; Li C; Kumar R; Papastavrou G; Retsch M; Brunschwig BS; Huang Z; Xiang C; Boettcher SW
    Nanotechnology; 2017 Mar; 28(9):095711. PubMed ID: 28139467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diamond-modified AFM probes: from diamond nanowires to atomic force microscopy-integrated boron-doped diamond electrodes.
    Smirnov W; Kriele A; Hoffmann R; Sillero E; Hees J; Williams OA; Yang N; Kranz C; Nebel CE
    Anal Chem; 2011 Jun; 83(12):4936-41. PubMed ID: 21534601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective nano-patterning of graphene using a heated atomic force microscope tip.
    Choi YS; Wu X; Lee DW
    Rev Sci Instrum; 2014 Apr; 85(4):045002. PubMed ID: 24784648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequential electrochemical oxidation and site-selective growth of nanoparticles onto AFM probes.
    Wang H; Tian T; Zhang Y; Pan Z; Wang Y; Xiao Z
    Langmuir; 2008 Aug; 24(16):8918-22. PubMed ID: 18597502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The manufacturing of a metallic nano-cluster at a tip apex for field-sensitive microscopy applications.
    Lin HM; Chang MN; Lin YS; Cheng CC
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4459-64. PubMed ID: 21128440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The possibility of multi-layer nanofabrication via atomic force microscope-based pulse electrochemical nanopatterning.
    Kim US; Morita N; Lee DW; Jun M; Park JW
    Nanotechnology; 2017 May; 28(19):195302. PubMed ID: 28346217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Note: Buoyant-force assisted liquid membrane electrochemical etching for nano-tip preparation.
    Zeng Y; Wang Y; Wu X; Xu K; Qu N
    Rev Sci Instrum; 2014 Dec; 85(12):126105. PubMed ID: 25554341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the Transition from Local Anodic Oxidation to Electrical Breakdown During Nanoscale Atomic Force Microscopy Electric Lithography of Highly Oriented Pyrolytic Graphite.
    Yang Y; Lin J
    Microsc Microanal; 2016 Apr; 22(2):432-9. PubMed ID: 26847869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic-Scale Friction Characteristics of Graphene under Conductive AFM with Applied Voltages.
    Lang H; Peng Y; Cao X; Zou K
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):25503-25511. PubMed ID: 32394710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The atomic force microscope as a mechano-electrochemical pen.
    Obermair C; Wagner A; Schimmel T
    Beilstein J Nanotechnol; 2011; 2():659-64. PubMed ID: 22043454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scanning probe oxidation lithography on Ta thin films.
    Okur S; Büjükköse S; Tari S
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5640-5. PubMed ID: 19198282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cleaning and hydrophilization of atomic force microscopy silicon probes.
    Sirghi L; Kylián O; Gilliland D; Ceccone G; Rossi F
    J Phys Chem B; 2006 Dec; 110(51):25975-81. PubMed ID: 17181247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the bias voltage effect and the force effect during the nanoscale AFM electric lithography on the copper thin film surface.
    Yang Y; Lin J
    Scanning; 2016 Sep; 38(5):412-420. PubMed ID: 26599706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.