These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 22108885)

  • 1. Technique for characterizing single-mode operability in optical fibers by utilizing variable-aperture technique.
    Matsui T; Nakajima K; Goto Y; Kurashima T
    Appl Opt; 2011 Nov; 50(33):6261-6. PubMed ID: 22108885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid crystal modified photonic crystal fiber (LC-PCF) fabricated with an un-cured SU-8 photoresist sealing technique for electrical flux measurement.
    Kuo SM; Huang YW; Yeh SM; Cheng WH; Lin CH
    Opt Express; 2011 Sep; 19(19):18372-9. PubMed ID: 21935205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of birefringent and dispersive properties of photonic crystal fibers.
    Lu S; Li W; Guo H; Lu M
    Appl Opt; 2011 Oct; 50(30):5798-802. PubMed ID: 22015407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a single-polarization single-mode photonic crystal fiber with a near-Gaussian mode field and wide bandwidth.
    Wang L; Lou S; Chen W; Li H
    Appl Opt; 2010 Nov; 49(32):6196-200. PubMed ID: 21068847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study of the effective single mode operational bandwidth in sub-wavelength optical wires and conventional single-mode fibers.
    Jung Y; Brambilla G; Richardson DJ
    Opt Express; 2009 Sep; 17(19):16619-24. PubMed ID: 19770877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-mode delivery of 250 nm light using a large mode area photonic crystal fiber.
    Yamamoto N; Tao L; Yalin AP
    Opt Express; 2009 Sep; 17(19):16933-40. PubMed ID: 19770911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The measurement and numerical study of numerical aperture of photonic crystal fiber].
    Guo YY; Hou LT
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Jul; 30(7):1908-12. PubMed ID: 20827997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation.
    Hartung A; Heidt AM; Bartelt H
    Opt Express; 2011 Apr; 19(8):7742-9. PubMed ID: 21503084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-hexagonal Large-Pitch Fibers for enhanced mode discrimination.
    Stutzki F; Jansen F; Jauregui C; Limpert J; Tünnermann A
    Opt Express; 2011 Jun; 19(13):12081-6. PubMed ID: 21716444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nondestructive measurement of core radius, numerical aperture, and cutoff wavelength for single-mode fibers.
    Masuda S; Iwama T; Daido Y
    Appl Opt; 1981 Dec; 20(23):4035-8. PubMed ID: 20372320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mode-selective mapping and control of vectorial nonlinear-optical processes in multimode photonic-crystal fibers.
    Hu ML; Wang CY; Song YJ; Li YF; Chai L; Serebryannikov E; Zheltikov A
    Opt Express; 2006 Feb; 14(3):1189-98. PubMed ID: 19503441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrabroadband polarization splitter based on three-core photonic crystal fibers.
    Lu W; Lou S; Wang X; Wang L; Feng R
    Appl Opt; 2013 Jan; 52(3):449-55. PubMed ID: 23338192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the tapering effects of fabricated photonic crystal fibers and tailoring birefringence, dispersion, and supercontinuum generation properties.
    Roy S; Mondal K; Roy Chaudhuri P
    Appl Opt; 2009 Nov; 48(31):G106-13. PubMed ID: 19881629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study of large-mode holey and conventional fibers.
    Baggett JC; Monro TM; Furusawa K; Richardson DJ
    Opt Lett; 2001 Jul; 26(14):1045-7. PubMed ID: 18049514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of optical tips from photonic crystal fibers.
    Carlson CA; Woehl JC
    Rev Sci Instrum; 2008 Oct; 79(10):103707. PubMed ID: 19044719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bandwidth comparison of photonic crystal fibers and conventional single-mode fibers.
    Nielsen M; Folkenberg J; Mortensen N; Bjarklev A
    Opt Express; 2004 Feb; 12(3):430-5. PubMed ID: 19474841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical refractometer based on large-core air-clad photonic crystal fibers.
    Silva S; Santos JL; Malcata FX; Kobelke J; Schuster K; Frazão O
    Opt Lett; 2011 Mar; 36(6):852-4. PubMed ID: 21403706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of the effective nonlinear and dispersion coefficients in optical fibers by the induced grating autocorrelation technique.
    Kuis R; Johnson A; Trivedi S
    Opt Express; 2011 Jan; 19(3):1755-66. PubMed ID: 21368990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear coupling in triangular triple-core photonic crystal fibers.
    Li P; Zhao J; Zhang X
    Opt Express; 2010 Dec; 18(26):26828-33. PubMed ID: 21196959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. More than threefold expansion of highly nonlinear photonic crystal fiber cores for low-loss fusion splicing.
    Chen Z; Xiong C; Xiao LM; Wadsworth WJ; Birks TA
    Opt Lett; 2009 Jul; 34(14):2240-2. PubMed ID: 19823561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.