These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 22109014)

  • 21. Analogue of electromagnetically induced transparency in a metal-dielectric bilayer terahertz metamaterial.
    Yue Y; He F; Chen L; Shu F; Jing X; Hong Z
    Opt Express; 2021 Jul; 29(14):21810-21819. PubMed ID: 34265960
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multi-Band Analogue Electromagnetically Induced Transparency in DoubleTuned Metamaterials.
    Huang W; He N; Ning R; Chen Z
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835557
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polarization and incidence insensitive dielectric electromagnetically induced transparency metamaterial.
    Zhang F; Zhao Q; Zhou J; Wang S
    Opt Express; 2013 Aug; 21(17):19675-80. PubMed ID: 24105514
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polarization-independent and angle-insensitive tunable electromagnetically induced transparency in terahertz metamaterials.
    Shi X; Tong Y; Ding Y
    Appl Opt; 2021 Sep; 60(25):7784-7789. PubMed ID: 34613251
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electromagnetically induced transparency in an all-dielectric nano-metamaterial for slow light application.
    Wang Q; Yu L; Gao H; Chu S; Peng W
    Opt Express; 2019 Nov; 27(24):35012-35026. PubMed ID: 31878678
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars.
    Dong ZG; Liu H; Xu MX; Li T; Wang SM; Zhu SN; Zhang X
    Opt Express; 2010 Aug; 18(17):18229-34. PubMed ID: 20721213
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polarization-sensitive and active controllable electromagnetically induced transparency in U-shaped terahertz metamaterials.
    Ren K; Zhang Y; Ren X; He Y; Han Q
    Front Optoelectron; 2021 Jun; 14(2):221-228. PubMed ID: 36637661
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High extinction ratio electromagnetically induced transparency analogue based on the radiation suppression of dark modes.
    Xie J; Zhu X; Zang X; Cheng Q; Ye Y; Zhu Y
    Sci Rep; 2017 Sep; 7(1):11291. PubMed ID: 28900248
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analog of multiple electromagnetically induced transparency using double-layered metasurfaces.
    Liu S; Xu Z; Yin X; Zhao H
    Sci Rep; 2020 May; 10(1):8469. PubMed ID: 32439938
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of electromagnetically induced transparency between silver, gold, and aluminum metamaterials at visible wavelengths.
    Hokari R; Kanamori Y; Hane K
    Opt Express; 2014 Feb; 22(3):3526-37. PubMed ID: 24663642
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings.
    Wan M; Song Y; Zhang L; Zhou F
    Opt Express; 2015 Oct; 23(21):27361-8. PubMed ID: 26480398
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bimodal Absorber Frequencies Shift Induced by the Coupling of Bright and Dark Modes.
    Chen Y; Hu J; Yin S; Zhang W; Huang W
    Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998458
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasmonic-induced optical transparency in the near-infrared and visible range with double split nanoring cavity.
    Liu SD; Yang Z; Liu RP; Li XY
    Opt Express; 2011 Aug; 19(16):15363-70. PubMed ID: 21934898
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Manipulating the plasmon-induced transparency in terahertz metamaterials.
    Li Z; Ma Y; Huang R; Singh R; Gu J; Tian Z; Han J; Zhang W
    Opt Express; 2011 Apr; 19(9):8912-9. PubMed ID: 21643144
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Independently tunable electromagnetically induced transparency effect and dispersion in a multi-band terahertz metamaterial.
    Sarkar R; Ghindani D; Devi KM; Prabhu SS; Ahmad A; Kumar G
    Sci Rep; 2019 Dec; 9(1):18068. PubMed ID: 31792270
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Actively Controllable Terahertz Metal-Graphene Metamaterial Based on Electromagnetically Induced Transparency Effect.
    Gao L; Feng C; Li Y; Chen X; Wang Q; Zhao X
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296861
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electromagnetically induced absorption in a three-resonator metasurface system.
    Zhang X; Xu N; Qu K; Tian Z; Singh R; Han J; Agarwal GS; Zhang W
    Sci Rep; 2015 May; 5():10737. PubMed ID: 26023061
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Magnetic annihilation of the dark mode in a strongly coupled bright-dark terahertz metamaterial.
    Manjappa M; Turaga SP; Srivastava YK; Bettiol AA; Singh R
    Opt Lett; 2017 Jun; 42(11):2106-2109. PubMed ID: 28569856
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices.
    Han Z; Bozhevolnyi SI
    Opt Express; 2011 Feb; 19(4):3251-7. PubMed ID: 21369147
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Observation of electromagnetically induced transparency and slow light in the dark state--bright state basis.
    Lauprêtre T; Ruggiero J; Ghosh R; Bretenaker F; Goldfarb F
    Opt Express; 2009 Oct; 17(22):19444-50. PubMed ID: 19997164
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.