These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 22109035)

  • 1. Reflection of nanosecond Nd:YAG laser pulses in ablation of metals.
    Benavides O; Lebedeva O; Golikov V
    Opt Express; 2011 Oct; 19(22):21842-8. PubMed ID: 22109035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study on reflection of nanosecond Nd-YAG laser pulses in ablation of metals in air and in vacuum.
    Benavides O; May Lde L; Gil AF
    Opt Express; 2013 Jun; 21(11):13068-74. PubMed ID: 23736560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of ultrafine particles by nanosecond laser sampling using orthogonal prepulse laser breakdown.
    Lindner H; Koch J; Niemax K
    Anal Chem; 2005 Dec; 77(23):7528-33. PubMed ID: 16316158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myocardium tissue ablation with high-peak-power nanosecond 1,064- and 532-nm pulsed lasers: influence of laser-induced plasma.
    Ogura M; Sato S; Ishihara M; Kawauchi S; Arai T; Matsui T; Kurita A; Kikuchi M; Ashida H; Obara M
    Lasers Surg Med; 2002; 31(2):136-41. PubMed ID: 12210598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a fiber-optic laser delivery system capable of delivering 213 and 266 nm pulsed Nd:YAG laser radiation for tissue ablation in a fluid environment.
    Miller J; Yu XB; Yu PK; Cringle SJ; Yu DY
    Appl Opt; 2011 Feb; 50(6):876-85. PubMed ID: 21343967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of corneal ablation efficiency using ultraviolet 213-nm solid state laser pulses.
    Dair GT; Pelouch WS; van Saarloos PP; Lloyd DJ; Linares SM; Reinholz F
    Invest Ophthalmol Vis Sci; 1999 Oct; 40(11):2752-6. PubMed ID: 10509676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Plasma formation in Nd:YAG laser surgery].
    Jungnickel K; Rein S; Vogel A
    Ophthalmologe; 1992 Aug; 89(4):283-7. PubMed ID: 1304200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigations on surface morphology and bandgap engineering of single crystal boron-doped silicon irradiated by a nanosecond laser.
    Sardar M; Jun C; Ullah Z; Tabassum A; Jelani M; Cheng J; Sun Y; Lv X; Jian L
    Appl Opt; 2018 Feb; 57(6):1296-1304. PubMed ID: 29469827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical evidence for reactive processes when embedding Cu nanoparticles in Al(2)O(3) by pulsed laser deposition.
    Serna R; Suárez-García A; Afonso CN; Babonneau D
    Nanotechnology; 2006 Sep; 17(18):4588-93. PubMed ID: 21727581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonant laser ablation of metals detected by atomic emission in a microwave plasma and by inductively coupled plasma mass spectrometry.
    Cleveland D; Stchur P; Hou X; Yang KX; Zhou J; Michel RG
    Appl Spectrosc; 2005 Dec; 59(12):1427-44. PubMed ID: 16390581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D volume-ablation rate and thermal side effects with the Er:YAG and Nd:YAG laser.
    Mehl A; Kremers L; Salzmann K; Hickel R
    Dent Mater; 1997 Jul; 13(4):246-51. PubMed ID: 11696904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of Long Time Pulses of an Nd
    Ciupak P; Barłowski A; Sagan P; Jasiński T; Kuzma M
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissolution studies of bovine dental enamel surfaces modified by high-speed scanning ablation with a lambda = 9.3-microm TEA CO(2) laser.
    Fried D; Featherstone JD; Le CQ; Fan K
    Lasers Surg Med; 2006 Oct; 38(9):837-45. PubMed ID: 17044095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the laser fluence in infrared matrix-assisted laser desorption/ionization with a 2.94 microm Er : YAG laser and a flat-top beam profile.
    Feldhaus D; Menzel C; Berkenkamp S; Hillenkamp F; Dreisewerd K
    J Mass Spectrom; 2000 Nov; 35(11):1320-8. PubMed ID: 11114091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct measurements of sample heating by a laser-induced air plasma in pre-ablation spark dual-pulse laser-induced breakdown spectroscopy (LIBS).
    Register J; Scaffidi J; Angel SM
    Appl Spectrosc; 2012 Aug; 66(8):869-74. PubMed ID: 22800813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of ablation threshold of copper alloy with orthogonal dual-pulse laser-ablation laser-induced breakdown spectroscopy.
    Zhou Q; Chen Y; Peng F; Yang X; Li R
    Appl Opt; 2013 Aug; 52(23):5600-5. PubMed ID: 23938407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser-induced breakdown spectroscopy (LIBS) analysis of laser processing in active crystal with nanosecond laser pulses.
    Alvira FC; Ródenas A; Torchia GA
    Appl Spectrosc; 2014; 68(4):475-82. PubMed ID: 24694704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of molybdenum layer on the laser plasma generated from interfacing copper layer.
    Kim CK; Kim DS; Lee SH; Shim HS; Jeong S
    Appl Opt; 2012 Mar; 51(7):B93-8. PubMed ID: 22410931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-pulsed neodymium:yttrium-aluminum-garnet laser treatment for port-wine stains.
    Yang MU; Yaroslavsky AN; Farinelli WA; Flotte TJ; Rius-Diaz F; Tsao SS; Anderson RR
    J Am Acad Dermatol; 2005 Mar; 52(3 Pt 1):480-90. PubMed ID: 15761427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The 1.320 micron Nd-YAG laser. Experimental study of a new wavelength adapted to neurosurgery].
    Roux FX; Mordon S; Mondragon S; Sahafi F; Fallet-Bianco C; Brunetaud JM
    Neurochirurgie; 1989; 35(3):152-7. PubMed ID: 2516297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.