These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 22109056)

  • 1. Effects of the tip shape on the localized field enhancement and far field radiation pattern of the plasmonic inverted pyramidal nanostructures with the tips for surface-enhanced Raman scattering.
    Cheng HH; Chen SW; Chang YY; Chu JY; Lin DZ; Chen YP; Li JH
    Opt Express; 2011 Oct; 19(22):22125-41. PubMed ID: 22109056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy.
    Wei H; Xu H
    Nanoscale; 2013 Nov; 5(22):10794-805. PubMed ID: 24113688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors.
    Caldwell JD; Glembocki O; Bezares FJ; Bassim ND; Rendell RW; Feygelson M; Ukaegbu M; Kasica R; Shirey L; Hosten C
    ACS Nano; 2011 May; 5(5):4046-55. PubMed ID: 21480637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-selective localization of analytes on gold nanorod surface for investigating field enhancement distribution in surface-enhanced Raman scattering.
    Chen T; Du C; Tan LH; Shen Z; Chen H
    Nanoscale; 2011 Apr; 3(4):1575-81. PubMed ID: 21286607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gap surface plasmon polaritons enhanced by a plasmonic lens.
    Chul Kim H; Cheng X
    Opt Lett; 2011 Aug; 36(16):3082-4. PubMed ID: 21847167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SERS-active substrate based on gap surface plasmon polaritons.
    Kim HC; Cheng X
    Opt Express; 2009 Sep; 17(20):17234-41. PubMed ID: 19907510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic near-field probes: a comparison of the campanile geometry with other sharp tips.
    Bao W; Staffaroni M; Bokor J; Salmeron MB; Yablonovitch E; Cabrini S; Weber-Bargioni A; Schuck PJ
    Opt Express; 2013 Apr; 21(7):8166-76. PubMed ID: 23571906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Focusing plasmons in nanoslits for surface-enhanced Raman scattering.
    Chen C; Hutchison JA; Van Dorpe P; Kox R; De Vlaminck I; Uji-I H; Hofkens J; Lagae L; Maes G; Borghs G
    Small; 2009 Dec; 5(24):2876-82. PubMed ID: 19816878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic coupled nanotorch structures leading to uniform surface enhanced Raman scattering detection.
    Chen HM; Pang L; King A; Hwang GM; Fainman Y
    Nanoscale; 2012 Dec; 4(24):7664-9. PubMed ID: 23051970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly controlled surface-enhanced Raman scattering chips using nanoengineered gold blocks.
    Yokota Y; Ueno K; Misawa H
    Small; 2011 Jan; 7(2):252-8. PubMed ID: 21213390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beamed Raman: directional excitation and emission enhancement in a plasmonic crystal double resonance SERS substrate.
    Chu Y; Zhu W; Wang D; Crozier KB
    Opt Express; 2011 Oct; 19(21):20054-68. PubMed ID: 21997016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmon resonances on metal tips: understanding tip-enhanced Raman scattering.
    Demming AL; Festy F; Richards D
    J Chem Phys; 2005 May; 122(18):184716. PubMed ID: 15918756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cantilever tip near-field surface-enhanced Raman imaging of tris(bipyridine)ruthenium(II) on silver nanoparticles-coated substrates.
    Jiang Y; Wang A; Ren B; Tian ZQ
    Langmuir; 2008 Oct; 24(20):12054-61. PubMed ID: 18774828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs.
    Lin HY; Huang CH; Chang CH; Lan YC; Chui HC
    Opt Express; 2010 Jan; 18(1):165-72. PubMed ID: 20173835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electric field enhancement and far-field radiation pattern of the nanoantenna with concentric rings.
    Chen SW; Huang YH; Chao BK; Hsueh CH; Li JH
    Nanoscale Res Lett; 2014 Dec; 9(1):2405. PubMed ID: 26088981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate-based platform for boosting the surface-enhanced Raman of plasmonic nanoparticles.
    Min Q; Pang Y; Collins DJ; Kuklev NA; Gottselig K; Steuerman DW; Gordon R
    Opt Express; 2011 Jan; 19(2):1648-55. PubMed ID: 21263704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering photonic-plasmonic coupling in metal nanoparticle necklaces.
    Pasquale AJ; Reinhard BM; Dal Negro L
    ACS Nano; 2011 Aug; 5(8):6578-85. PubMed ID: 21739951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoplasmonics of prime number arrays.
    Forestiere C; Walsh GF; Miano G; Dal Negro L
    Opt Express; 2009 Dec; 17(26):24288-303. PubMed ID: 20052140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.