These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 22109061)

  • 41. Coupled photonic crystal micro-cavities with ultra-low threshold power for stimulated Raman scattering.
    Liu Q; Ouyang Z; Albin S
    Opt Express; 2011 Feb; 19(5):4795-804. PubMed ID: 21369311
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ultra-compact channel drop filter based on photonic crystal nanobeam cavities utilizing a resonant tunneling effect.
    Ge X; Shi Y; He S
    Opt Lett; 2014 Dec; 39(24):6973-6. PubMed ID: 25503044
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optical bistability in a one-dimensional photonic crystal resonator using a reverse-biased pn-junction.
    Sodagar M; Miri M; Eftekhar AA; Adibi A
    Opt Express; 2015 Feb; 23(3):2676-85. PubMed ID: 25836130
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nanobeam photonic crystal cavity quantum dot laser.
    Gong Y; Ellis B; Shambat G; Sarmiento T; Harris JS; Vuckovic J
    Opt Express; 2010 Apr; 18(9):8781-9. PubMed ID: 20588722
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ultra-low power modulators using MOS depletion in a high-Q SiO₂-clad silicon 2-D photonic crystal resonator.
    Anderson SP; Fauchet PM
    Opt Express; 2010 Aug; 18(18):19129-40. PubMed ID: 20940808
    [TBL] [Abstract][Full Text] [Related]  

  • 46. On-chip integrated optofluidic complex refractive index sensing using silicon photonic crystal nanobeam cavities.
    Zhang X; Zhou G; Shi P; Du H; Lin T; Teng J; Chau FS
    Opt Lett; 2016 Mar; 41(6):1197-200. PubMed ID: 26977668
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Photonic crystal horizontally slotted nanobeam cavity for silicon-based nanolasers.
    Lu TW; Lin PT; Lee PT
    Opt Lett; 2012 Feb; 37(4):569-71. PubMed ID: 22344109
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Disposable photonic integrated circuits for evanescent wave sensors by ultra-high volume roll-to-roll method.
    Aikio S; Hiltunen J; Hiitola-Keinänen J; Hiltunen M; Kontturi V; Siitonen S; Puustinen J; Karioja P
    Opt Express; 2016 Feb; 24(3):2527-41. PubMed ID: 26906827
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity.
    Haret LD; Tanabe T; Kuramochi E; Notomi M
    Opt Express; 2009 Nov; 17(23):21108-17. PubMed ID: 19997350
    [TBL] [Abstract][Full Text] [Related]  

  • 50. One-step integration of metal nanoparticle in photonic crystal nanobeam cavity.
    Mukherjee I; Hajisalem G; Gordon R
    Opt Express; 2011 Nov; 19(23):22462-9. PubMed ID: 22109123
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor.
    Portalupi SL; Galli M; Reardon C; Krauss TF; O'Faolain L; Andreani LC; Gerace D
    Opt Express; 2010 Jul; 18(15):16064-73. PubMed ID: 20720991
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nonlinear frequency conversion using high-quality modes in GaAs nanobeam cavities.
    Buckley S; Radulaski M; Zhang JL; Petykiewicz J; Biermann K; Vučković J
    Opt Lett; 2014 Oct; 39(19):5673-6. PubMed ID: 25360956
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A new generation of sensors based on extraordinary optical transmission.
    Gordon R; Sinton D; Kavanagh KL; Brolo AG
    Acc Chem Res; 2008 Aug; 41(8):1049-57. PubMed ID: 18605739
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhancement of chemical sensing capability in a photonic crystal fiber with a hollow high index ring defect at the center.
    Park J; Lee S; Kim S; Oh K
    Opt Express; 2011 Jan; 19(3):1921-9. PubMed ID: 21369007
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Universal scaling of the figure of merit of plasmonic sensors.
    Offermans P; Schaafsma MC; Rodriguez SR; Zhang Y; Crego-Calama M; Brongersma SH; Gómez Rivas J
    ACS Nano; 2011 Jun; 5(6):5151-7. PubMed ID: 21574624
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanoelectromechanical-systems-controlled bistability of double-coupled photonic crystal cavities.
    Tian F; Zhou G; Du Y; Chau FS; Deng J; Teo SL; Akkipeddi R
    Opt Lett; 2013 Sep; 38(17):3394-7. PubMed ID: 23988967
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Slot-mode-coupled optomechanical crystals.
    Davanço M; Chan J; Safavi-Naeini AH; Painter O; Srinivasan K
    Opt Express; 2012 Oct; 20(22):24394-410. PubMed ID: 23187203
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters.
    Miura R; Imamura S; Ohta R; Ishii A; Liu X; Shimada T; Iwamoto S; Arakawa Y; Kato YK
    Nat Commun; 2014 Nov; 5():5580. PubMed ID: 25420679
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Double resonance 1-D photonic crystal cavities for single-molecule mid-infrared photothermal spectroscopy: theory and design.
    Lin H; Yi Z; Hu J
    Opt Lett; 2012 Apr; 37(8):1304-6. PubMed ID: 22513667
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Slotted photonic crystal cavities with integrated microfluidics for biosensing applications.
    Scullion MG; Di Falco A; Krauss TF
    Biosens Bioelectron; 2011 Sep; 27(1):101-5. PubMed ID: 21764290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.