BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 22109099)

  • 1. Bone remodelling around a cementless glenoid component.
    Suárez DR; Weinans H; van Keulen F
    Biomech Model Mechanobiol; 2012 Jul; 11(6):903-13. PubMed ID: 22109099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone remodelling of the scapula after a total shoulder arthroplasty.
    Quental C; Fernandes PR; Monteiro J; Folgado J
    Biomech Model Mechanobiol; 2014 Aug; 13(4):827-38. PubMed ID: 24682713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fracture risk and initial fixation of a cementless glenoid implant: the effect of numbers and types of screws.
    Suarez DR; Valstar ER; Rozing PM; van Keulen F
    Proc Inst Mech Eng H; 2013 Oct; 227(10):1058-66. PubMed ID: 23804951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The possibilities of uncemented glenoid component--a finite element study.
    Gupta S; van der Helm FC; van Keulen F
    Clin Biomech (Bristol, Avon); 2004 Mar; 19(3):292-302. PubMed ID: 15003345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone remodelling around uncemented metallic and ceramic acetabular components.
    Ghosh R; Mukherjee K; Gupta S
    Proc Inst Mech Eng H; 2013 May; 227(5):490-502. PubMed ID: 23637259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interface micromotions increase with less-conforming cementless glenoid components.
    Suárez DR; Nerkens W; Valstar ER; Rozing PM; van Keulen F
    J Shoulder Elbow Surg; 2012 Apr; 21(4):474-82. PubMed ID: 21641827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone-cement interface of the glenoid component: stress analysis for varying cement thickness.
    Terrier A; Büchler P; Farron A
    Clin Biomech (Bristol, Avon); 2005 Aug; 20(7):710-7. PubMed ID: 15961203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Augmented wedge-shaped glenoid component for the correction of glenoid retroversion: a finite element analysis.
    Hermida JC; Flores-Hernandez C; Hoenecke HR; D'Lima DD
    J Shoulder Elbow Surg; 2014 Mar; 23(3):347-54. PubMed ID: 24007648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of tibial component fixation techniques on resorption of supporting bone stock after total knee replacement.
    Chong DY; Hansen UN; van der Venne R; Verdonschot N; Amis AA
    J Biomech; 2011 Mar; 44(5):948-54. PubMed ID: 21236431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An experimental glenoid rim strain analysis for an improved reverse anatomy shoulder implant fixation.
    Mordecai SC; Lambert SM; Meswania JM; Blunn GW; Bayley IL; Taylor SJ
    J Orthop Res; 2012 Jun; 30(6):998-1003. PubMed ID: 22095751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Noncemented total hip arthroplasty: influence of extramedullary parameters on initial implant stability and on bone-implant interface stresses].
    Ramaniraka NA; Rakotomanana LR; Rubin PJ; Leyvraz P
    Rev Chir Orthop Reparatrice Appar Mot; 2000 Oct; 86(6):590-7. PubMed ID: 11060433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone remodelling inside a cemented resurfaced femoral head.
    Gupta S; New AM; Taylor M
    Clin Biomech (Bristol, Avon); 2006 Jul; 21(6):594-602. PubMed ID: 16542761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of bone-prosthesis interface micromotion for cementless tibial prosthesis fixation and the influence of loading conditions.
    Chong DY; Hansen UN; Amis AA
    J Biomech; 2010 Apr; 43(6):1074-80. PubMed ID: 20189576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of glenoid prosthesis design on glenoid bone remodeling: adaptive finite element based simulation.
    Sharma GB; Debski RE; McMahon PJ; Robertson DD
    J Biomech; 2010 Jun; 43(9):1653-9. PubMed ID: 20394931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone remodelling around cementless composite acetabular components: the effects of implant geometry and implant-bone interfacial conditions.
    Ghosh R; Gupta S
    J Mech Behav Biomed Mater; 2014 Apr; 32():257-269. PubMed ID: 24508712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone ingrowth simulation for a concept glenoid component design.
    Andreykiv A; Prendergast PJ; van Keulen F; Swieszkowski W; Rozing PM
    J Biomech; 2005 May; 38(5):1023-33. PubMed ID: 15797584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the positioning of a cementless glenoid prosthesis on its interface micromotions.
    Suárez DR; van der Linden JC; Valstar ER; Broomans P; Poort G; Rozing PM; van Keulen F
    Proc Inst Mech Eng H; 2009 Oct; 223(7):795-804. PubMed ID: 19908418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of femoral stem geometry, material and extent of porous coating on bone ingrowth and atrophy in cementless total hip arthroplasty: an iterative finite element model.
    Folgado J; Fernandes PR; Jacobs CR; Pellegrini VD
    Comput Methods Biomech Biomed Engin; 2009 Apr; 12(2):135-45. PubMed ID: 19242833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numeric simulation of time-dependent remodeling of bone around loaded oral implants.
    Eser A; Tonuk E; Akca K; Cehreli MC
    Int J Oral Maxillofac Implants; 2009; 24(4):597-608. PubMed ID: 19885399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stress analysis of cemented glenoid prostheses in total shoulder arthroplasty.
    Gupta S; van der Helm FC; van Keulen F
    J Biomech; 2004 Nov; 37(11):1777-86. PubMed ID: 15388321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.