BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 22109488)

  • 1. Holographic aberration correction: optimising the stiffness of an optical trap deep in the sample.
    Dienerowitz M; Gibson G; Bowman R; Padgett M
    Opt Express; 2011 Nov; 19(24):24589-95. PubMed ID: 22109488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical mirror trap with a large field of view.
    Pitzek M; Steiger R; Thalhammer G; Bernet S; Ritsch-Marte M
    Opt Express; 2009 Oct; 17(22):19414-23. PubMed ID: 19997161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of external forces on discrete motion within holographic optical tweezers.
    Eriksson E; Keen S; Leach J; Goksör M; Padgett MJ
    Opt Express; 2007 Dec; 15(26):18268-74. PubMed ID: 19551124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increasing trap stiffness with position clamping in holographic optical tweezers.
    Preece D; Bowman R; Linnenberger A; Gibson G; Serati S; Padgett M
    Opt Express; 2009 Dec; 17(25):22718-25. PubMed ID: 20052197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase aberration correction by correlation in digital holographic adaptive optics.
    Liu C; Yu X; Kim MK
    Appl Opt; 2013 Apr; 52(12):2940-9. PubMed ID: 23669707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy.
    Colomb T; Montfort F; Kühn J; Aspert N; Cuche E; Marian A; Charrière F; Bourquin S; Marquet P; Depeursinge C
    J Opt Soc Am A Opt Image Sci Vis; 2006 Dec; 23(12):3177-90. PubMed ID: 17106474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spherical aberration correction suitable for a wavefront controller.
    Itoh H; Matsumoto N; Inoue T
    Opt Express; 2009 Aug; 17(16):14367-73. PubMed ID: 19654844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Holographic optical tweezers combined with back-focal-plane displacement detection.
    Marsà F; Farré A; Martín-Badosa E; Montes-Usategui M
    Opt Express; 2013 Dec; 21(25):30282-94. PubMed ID: 24514607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimizing intensity fluctuations in dynamic holographic optical tweezers by restricted phase change.
    Persson M; Engström D; Frank A; Backsten J; Bengtsson J; Goksör M
    Opt Express; 2010 May; 18(11):11250-63. PubMed ID: 20588985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical manipulation of aerosol droplets using a holographic dual and single beam trap.
    Brzobohatý O; Šiler M; Ježek J; Jákl P; Zemánek P
    Opt Lett; 2013 Nov; 38(22):4601-4. PubMed ID: 24322084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated focusing of nuclei for time lapse experiments on single cells using holographic optical tweezers.
    Eriksson E; Engström D; Scrimgeour J; Goksör M
    Opt Express; 2009 Mar; 17(7):5585-94. PubMed ID: 19333326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wide-field three-dimensional optical imaging using temporal focusing for holographically trapped microparticles.
    Spesyvtsev R; Rendall HA; Dholakia K
    Opt Lett; 2015 Nov; 40(21):4847-50. PubMed ID: 26512465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Holographic plasmonic lenses for surface plasmons with complex wavefront profile.
    Chen YH; Zhang M; Gan L; Wu X; Sun L; Liu J; Wang J; Li ZY
    Opt Express; 2013 Jul; 21(15):17558-66. PubMed ID: 23938627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions.
    Conkey DB; Trivedi RP; Pavani SR; Smalyukh II; Piestun R
    Opt Express; 2011 Feb; 19(5):3835-42. PubMed ID: 21369208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of ghost images by using tilted element optical systems with polynomial surfaces for aberration compensation.
    Rogers JD; Tkaczyk TS; Descour MR; Kärkkäinen AH; Richards-Kortum R
    Opt Lett; 2006 Feb; 31(4):504-6. PubMed ID: 16496901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Super-resolution in incoherent optical imaging using synthetic aperture with Fresnel elements.
    Katz B; Rosen J
    Opt Express; 2010 Jan; 18(2):962-72. PubMed ID: 20173918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resolution comparison between integral-imaging-based hologram synthesis methods using rectangular and hexagonal lens arrays.
    Chen N; Yeom J; Jung JH; Park JH; Lee B
    Opt Express; 2011 Dec; 19(27):26917-27. PubMed ID: 22274275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CGH calculation with the ray tracing method for the Fourier transform optical system.
    Ichikawa T; Yoneyama T; Sakamoto Y
    Opt Express; 2013 Dec; 21(26):32019-31. PubMed ID: 24514797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Particle tracking stereomicroscopy in optical tweezers: control of trap shape.
    Bowman R; Gibson G; Padgett M
    Opt Express; 2010 May; 18(11):11785-90. PubMed ID: 20589039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theory of holographic optical trapping.
    Sun B; Roichman Y; Grier DG
    Opt Express; 2008 Sep; 16(20):15765-76. PubMed ID: 18825216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.