These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 22109507)
1. Mechanism of optical absorption enhancement in thin film organic solar cells with plasmonic metal nanoparticles. Qu D; Liu F; Huang Y; Xie W; Xu Q Opt Express; 2011 Nov; 19(24):24795-803. PubMed ID: 22109507 [TBL] [Abstract][Full Text] [Related]
2. Broadband absorption enhancement achieved by optical layer mediated plasmonic solar cell. Ren W; Zhang G; Wu Y; Ding H; Shen Q; Zhang K; Li J; Pan N; Wang X Opt Express; 2011 Dec; 19(27):26536-50. PubMed ID: 22274238 [TBL] [Abstract][Full Text] [Related]
3. Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes. Akimov YA; Koh WS; Ostrikov K Opt Express; 2009 Jun; 17(12):10195-205. PubMed ID: 19506674 [TBL] [Abstract][Full Text] [Related]
4. Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells. Le KQ; Abass A; Maes B; Bienstman P; Alù A Opt Express; 2012 Jan; 20(1):A39-50. PubMed ID: 22379677 [TBL] [Abstract][Full Text] [Related]
5. The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer. Lee JY; Peumans P Opt Express; 2010 May; 18(10):10078-87. PubMed ID: 20588861 [TBL] [Abstract][Full Text] [Related]
6. Direct optical measurement of light coupling into planar waveguide by plasmonic nanoparticles. Pennanen AM; Toppari JJ Opt Express; 2013 Jan; 21 Suppl 1():A23-35. PubMed ID: 23389272 [TBL] [Abstract][Full Text] [Related]
7. Influence of the light trapping induced by surface plasmons and antireflection film in crystalline silicon solar cells. Xu R; Wang X; Song L; Liu W; Ji A; Yang F; Li J Opt Express; 2012 Feb; 20(5):5061-8. PubMed ID: 22418311 [TBL] [Abstract][Full Text] [Related]
8. Electron accumulation on metal nanoparticles in plasmon-enhanced organic solar cells. Salvador M; MacLeod BA; Hess A; Kulkarni AP; Munechika K; Chen JI; Ginger DS ACS Nano; 2012 Nov; 6(11):10024-32. PubMed ID: 23062171 [TBL] [Abstract][Full Text] [Related]
9. Light concentration and redistribution in polymer solar cells by plasmonic nanoparticles. Zhu J; Xue M; Hoekstra R; Xiu F; Zeng B; Wang KL Nanoscale; 2012 Mar; 4(6):1978-81. PubMed ID: 22354350 [TBL] [Abstract][Full Text] [Related]
10. Understanding the plasmonic properties of dewetting formed Ag nanoparticles for large area solar cell applications. Günendi MC; Tanyeli İ; Akgüç GB; Bek A; Turan R; Gülseren O Opt Express; 2013 Jul; 21(15):18344-53. PubMed ID: 23938706 [TBL] [Abstract][Full Text] [Related]
11. Spatial distribution of absorption in plasmonic thin film solar cells. Chao CC; Wang CM; Chang JY Opt Express; 2010 May; 18(11):11763-71. PubMed ID: 20589037 [TBL] [Abstract][Full Text] [Related]
12. Broadband light absorption enhancement in polymer photovoltaics using metal nanowall gratings as transparent electrodes. Ye Z; Chaudhary S; Kuang P; Ho KM Opt Express; 2012 May; 20(11):12213-21. PubMed ID: 22714211 [TBL] [Abstract][Full Text] [Related]
13. A comprehensive study for the plasmonic thin-film solar cell with periodic structure. Sha WE; Choy WC; Chew WC Opt Express; 2010 Mar; 18(6):5993-6007. PubMed ID: 20389619 [TBL] [Abstract][Full Text] [Related]
14. Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings. Lee YC; Huang CF; Chang JY; Wu ML Opt Express; 2008 May; 16(11):7969-75. PubMed ID: 18545506 [TBL] [Abstract][Full Text] [Related]
15. E-beam deposited Ag-nanoparticles plasmonic organic solar cell and its absorption enhancement analysis using FDTD-based cylindrical nano-particle optical model. Kim RS; Zhu J; Park JH; Li L; Yu Z; Shen H; Xue M; Wang KL; Park G; Anderson TJ; Pei Q Opt Express; 2012 Jun; 20(12):12649-57. PubMed ID: 22714293 [TBL] [Abstract][Full Text] [Related]
16. Light harvesting improvement of organic solar cells with self-enhanced active layer designs. Chen L; Sha WE; Choy WC Opt Express; 2012 Mar; 20(7):8175-85. PubMed ID: 22453487 [TBL] [Abstract][Full Text] [Related]
17. Imprinting localized plasmons for enhanced solar cells. Dunbar RB; Pfadler T; Lal NN; Baumberg JJ; Schmidt-Mende L Nanotechnology; 2012 Sep; 23(38):385202. PubMed ID: 22948008 [TBL] [Abstract][Full Text] [Related]
18. Absorption enhancement using photonic crystals for silicon thin film solar cells. Park Y; Drouard E; El Daif O; Letartre X; Viktorovitch P; Fave A; Kaminski A; Lemiti M; Seassal C Opt Express; 2009 Aug; 17(16):14312-21. PubMed ID: 19654839 [TBL] [Abstract][Full Text] [Related]
19. Optical and electrical study of organic solar cells with a 2D grating anode. Sha WE; Choy WC; Wu Y; Chew WC Opt Express; 2012 Jan; 20(3):2572-80. PubMed ID: 22330495 [TBL] [Abstract][Full Text] [Related]
20. Triangular metallic gratings for large absorption enhancement in thin film Si solar cells. Battal E; Yogurt TA; Aygun LE; Okyay AK Opt Express; 2012 Apr; 20(9):9458-64. PubMed ID: 22535035 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]