These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 22109725)
21. From fields to fuels: recent advances in the microbial production of biofuels. Kung Y; Runguphan W; Keasling JD ACS Synth Biol; 2012 Nov; 1(11):498-513. PubMed ID: 23656227 [TBL] [Abstract][Full Text] [Related]
22. Recent progress in synthetic biology for microbial production of C3-C10 alcohols. Lamsen EN; Atsumi S Front Microbiol; 2012; 3():196. PubMed ID: 22701113 [TBL] [Abstract][Full Text] [Related]
23. Synthetic biology for microbial production of lipid-based biofuels. d'Espaux L; Mendez-Perez D; Li R; Keasling JD Curr Opin Chem Biol; 2015 Dec; 29():58-65. PubMed ID: 26479184 [TBL] [Abstract][Full Text] [Related]
24. Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches. Jang YS; Park JM; Choi S; Choi YJ; Seung do Y; Cho JH; Lee SY Biotechnol Adv; 2012; 30(5):989-1000. PubMed ID: 21889585 [TBL] [Abstract][Full Text] [Related]
25. Engineering Corynebacterium crenatum to produce higher alcohols for biofuel using hydrolysates of duckweed (Landoltia punctata) as feedstock. Su H; Jiang J; Lu Q; Zhao Z; Xie T; Zhao H; Wang M Microb Cell Fact; 2015 Feb; 14():16. PubMed ID: 25889648 [TBL] [Abstract][Full Text] [Related]
26. Bioengineering of microorganisms for C₃ to C₅ alcohols production. Mainguet SE; Liao JC Biotechnol J; 2010 Dec; 5(12):1297-308. PubMed ID: 21154669 [TBL] [Abstract][Full Text] [Related]
27. Engineering biofuel tolerance in non-native producing microorganisms. Jin H; Chen L; Wang J; Zhang W Biotechnol Adv; 2014; 32(2):541-8. PubMed ID: 24530635 [TBL] [Abstract][Full Text] [Related]
28. New microbial fuels: a biotech perspective. Rude MA; Schirmer A Curr Opin Microbiol; 2009 Jun; 12(3):274-81. PubMed ID: 19447673 [TBL] [Abstract][Full Text] [Related]
29. Genomic, transcriptomic, and metabolic characterizations of Escherichia coli adapted to branched-chain higher alcohol tolerance. Wang B; Guo Y; Xu Z; Tu R; Wang Q Appl Microbiol Biotechnol; 2020 May; 104(9):4171-4184. PubMed ID: 32189046 [TBL] [Abstract][Full Text] [Related]
30. Metabolic engineering for the high-yield production of isoprenoid-based C₅ alcohols in E. coli. George KW; Thompson MG; Kang A; Baidoo E; Wang G; Chan LJ; Adams PD; Petzold CJ; Keasling JD; Lee TS Sci Rep; 2015 Jun; 5():11128. PubMed ID: 26052683 [TBL] [Abstract][Full Text] [Related]
31. Development of microbial cell factories for bio-refinery through synthetic bioengineering. Kondo A; Ishii J; Hara KY; Hasunuma T; Matsuda F J Biotechnol; 2013 Jan; 163(2):204-16. PubMed ID: 22728424 [TBL] [Abstract][Full Text] [Related]
32. 2-Keto acids based biosynthesis pathways for renewable fuels and chemicals. Tashiro Y; Rodriguez GM; Atsumi S J Ind Microbiol Biotechnol; 2015 Mar; 42(3):361-73. PubMed ID: 25424696 [TBL] [Abstract][Full Text] [Related]
33. Engineered fatty acid catabolism for fuel and chemical production. Kim S; Cheong S; Chou A; Gonzalez R Curr Opin Biotechnol; 2016 Dec; 42():206-215. PubMed ID: 27636720 [TBL] [Abstract][Full Text] [Related]
34. Metabolic engineering of Corynebacterium crenatium for enhancing production of higher alcohols. Su H; Lin J; Wang G Sci Rep; 2016 Dec; 6():39543. PubMed ID: 27996038 [TBL] [Abstract][Full Text] [Related]
35. Metabolic engineering for production of biorenewable fuels and chemicals: contributions of synthetic biology. Jarboe LR; Zhang X; Wang X; Moore JC; Shanmugam KT; Ingram LO J Biomed Biotechnol; 2010; 2010():761042. PubMed ID: 20414363 [TBL] [Abstract][Full Text] [Related]
36. Metabolic engineering of Escherichia coli for the production of isobutanol: a review. Gu P; Liu L; Ma Q; Dong Z; Wang Q; Xu J; Huang Z; Li Q World J Microbiol Biotechnol; 2021 Sep; 37(10):168. PubMed ID: 34487256 [TBL] [Abstract][Full Text] [Related]
37. Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system. Torella JP; Gagliardi CJ; Chen JS; Bediako DK; Colón B; Way JC; Silver PA; Nocera DG Proc Natl Acad Sci U S A; 2015 Feb; 112(8):2337-42. PubMed ID: 25675518 [TBL] [Abstract][Full Text] [Related]
38. The path to next generation biofuels: successes and challenges in the era of synthetic biology. Dellomonaco C; Fava F; Gonzalez R Microb Cell Fact; 2010 Jan; 9():3. PubMed ID: 20089184 [TBL] [Abstract][Full Text] [Related]
39. Biosynthesis, regulation, and engineering of microbially produced branched biofuels. Bai W; Geng W; Wang S; Zhang F Biotechnol Biofuels; 2019; 12():84. PubMed ID: 31011367 [TBL] [Abstract][Full Text] [Related]
40. Building cell factories for the production of advanced fuels. Shakeel T; Sharma A; Yazdani SS Biochem Soc Trans; 2019 Dec; 47(6):1701-1714. PubMed ID: 31803925 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]