BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 22109972)

  • 1. A novel human Smad4 mutation is involved in papillary thyroid carcinoma progression.
    D'Inzeo S; Nicolussi A; Donini CF; Zani M; Mancini P; Nardi F; Coppa A
    Endocr Relat Cancer; 2012 Feb; 19(1):39-55. PubMed ID: 22109972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of the Smad4 C324Y mutation on thyroid cell proliferation.
    D'Inzeo S; Nicolussi A; Nardi F; Coppa A
    Int J Oncol; 2013 Jun; 42(6):1890-6. PubMed ID: 23591524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of reduced expression of SMAD4 in papillary thyroid carcinoma.
    D'Inzeo S; Nicolussi A; Ricci A; Mancini P; Porcellini A; Nardi F; Coppa A
    J Mol Endocrinol; 2010 Oct; 45(4):229-44. PubMed ID: 20685810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rewiring of the apoptotic TGF-β-SMAD/NFκB pathway through an oncogenic function of p27 in human papillary thyroid cancer.
    Garcia-Rendueles AR; Rodrigues JS; Garcia-Rendueles ME; Suarez-Fariña M; Perez-Romero S; Barreiro F; Bernabeu I; Rodriguez-Garcia J; Fugazzola L; Sakai T; Liu F; Cameselle-Teijeiro J; Bravo SB; Alvarez CV
    Oncogene; 2017 Feb; 36(5):652-666. PubMed ID: 27452523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LDOC1 inhibits proliferation and promotes apoptosis by repressing NF-κB activation in papillary thyroid carcinoma.
    Zhao S; Wang Q; Li Z; Ma X; Wu L; Ji H; Qin G
    J Exp Clin Cancer Res; 2015 Dec; 34():146. PubMed ID: 26637328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of Smad4 and Smad7 in human thyroid follicular carcinoma cell lines.
    Cerutti JM; Ebina KN; Matsuo SE; Martins L; Maciel RM; Kimura ET
    J Endocrinol Invest; 2003 Jun; 26(6):516-21. PubMed ID: 12952364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FoxP3 in papillary thyroid carcinoma induces NIS repression through activation of the TGF-β1/Smad signaling pathway.
    Ma S; Wang Q; Ma X; Wu L; Guo F; Ji H; Liu F; Zhao Y; Qin G
    Tumour Biol; 2016 Jan; 37(1):989-98. PubMed ID: 26264613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MicroRNA miR-146b-5p regulates signal transduction of TGF-β by repressing SMAD4 in thyroid cancer.
    Geraldo MV; Yamashita AS; Kimura ET
    Oncogene; 2012 Apr; 31(15):1910-22. PubMed ID: 21874046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel mutations in Smad proteins that inhibit signaling by the transforming growth factor beta in mammalian cells.
    Prokova V; Mavridou S; Papakosta P; Petratos K; Kardassis D
    Biochemistry; 2007 Dec; 46(48):13775-86. PubMed ID: 17994767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ABCG2/BCRP gene expression is related to epithelial-mesenchymal transition inducer genes in a papillary thyroid carcinoma cell line (TPC-1).
    Mato E; González C; Moral A; Pérez JI; Bell O; Lerma E; de Leiva A
    J Mol Endocrinol; 2014 Jun; 52(3):289-300. PubMed ID: 24643400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MiRNA-34a reversed TGF-β-induced epithelial-mesenchymal transition via suppression of SMAD4 in NPC cells.
    Huang G; Du MY; Zhu H; Zhang N; Lu ZW; Qian LX; Zhang W; Tian X; He X; Yin L
    Biomed Pharmacother; 2018 Oct; 106():217-224. PubMed ID: 29960168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of invasive potential in K-ras-transformed thyroid cells by restoring of TGF-beta pathway.
    Nicolussi A; D'Inzeo S; Gismondi A; Coppa A
    Clin Exp Metastasis; 2006; 23(5-6):237-48. PubMed ID: 17086361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MiRNA-146b-5p upregulates migration and invasion of different Papillary Thyroid Carcinoma cells.
    Lima CR; Geraldo MV; Fuziwara CS; Kimura ET; Santos MF
    BMC Cancer; 2016 Feb; 16():108. PubMed ID: 26883911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Negative control of TRAIL-R1 signaling by transforming growth factor β1 in pancreatic tumor cells involves Smad-dependent down regulation of TRAIL-R1.
    Radke DI; Ungefroren H; Helm O; Voigt S; Alp G; Braun H; Hübner S; Dilchert J; Sebens S; Adam D; Kalthoff H; Trauzold A
    Cell Signal; 2016 Nov; 28(11):1652-62. PubMed ID: 27492861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transforming growth factor-beta1 and activin A generate antiproliferative signaling in thyroid cancer cells.
    Matsuo SE; Leoni SG; Colquhoun A; Kimura ET
    J Endocrinol; 2006 Jul; 190(1):141-50. PubMed ID: 16837618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The BRAFV600E oncogene induces transforming growth factor beta secretion leading to sodium iodide symporter repression and increased malignancy in thyroid cancer.
    Riesco-Eizaguirre G; Rodríguez I; De la Vieja A; Costamagna E; Carrasco N; Nistal M; Santisteban P
    Cancer Res; 2009 Nov; 69(21):8317-25. PubMed ID: 19861538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TGF-β1 inhibits the growth and metastasis of tongue squamous carcinoma cells through Smad4.
    Wang X; Sun W; Zhang C; Ji G; Ge Y; Xu Y; Zhao Y
    Gene; 2011 Oct; 485(2):160-6. PubMed ID: 21726607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dipeptidyl Peptidase IV as a Prognostic Marker and Therapeutic Target in Papillary Thyroid Carcinoma.
    Lee JJ; Wang TY; Liu CL; Chien MN; Chen MJ; Hsu YC; Leung CH; Cheng SP
    J Clin Endocrinol Metab; 2017 Aug; 102(8):2930-2940. PubMed ID: 28575350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upregulation of lncRNA-ATB by Transforming Growth Factor β1 (TGF-β1) Promotes Migration and Invasion of Papillary Thyroid Carcinoma Cells.
    Cui M; Chang Y; Du W; Liu S; Qi J; Luo R; Luo S
    Med Sci Monit; 2018 Jul; 24():5152-5158. PubMed ID: 30042377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SMAD4 gene promoter mutations in patients with thyroid tumors.
    Nikolic A; Ristanovic M; Zivaljevic V; Rankov AD; Radojkovic D; Paunovic I
    Exp Mol Pathol; 2015 Aug; 99(1):100-3. PubMed ID: 26079547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.