BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 22109998)

  • 1. Segregated and overlapping neural circuits exist for the production of static and dynamic precision grip force.
    Neely KA; Coombes SA; Planetta PJ; Vaillancourt DE
    Hum Brain Mapp; 2013 Mar; 34(3):698-712. PubMed ID: 22109998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential representation of dynamic and static power grip force in the sensorimotor network.
    Keisker B; Hepp-Reymond MC; Blickenstorfer A; Kollias SS
    Eur J Neurosci; 2010 Apr; 31(8):1483-91. PubMed ID: 20384781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical and subcortical alterations associated with precision visuomotor behavior in individuals with autism spectrum disorder.
    Unruh KE; Martin LE; Magnon G; Vaillancourt DE; Sweeney JA; Mosconi MW
    J Neurophysiol; 2019 Oct; 122(4):1330-1341. PubMed ID: 31314644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential force scaling of fine-graded power grip force in the sensorimotor network.
    Keisker B; Hepp-Reymond MC; Blickenstorfer A; Meyer M; Kollias SS
    Hum Brain Mapp; 2009 Aug; 30(8):2453-65. PubMed ID: 19172654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A functional MRI study of motor dysfunction in Friedreich's ataxia.
    Akhlaghi H; Corben L; Georgiou-Karistianis N; Bradshaw J; Delatycki MB; Storey E; Egan GF
    Brain Res; 2012 Aug; 1471():138-54. PubMed ID: 22771856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebellar and premotor activity during a non-fatiguing grip task reflects motor fatigue in relapsing-remitting multiple sclerosis.
    Svolgaard O; Andersen KW; Bauer C; Madsen KH; Blinkenberg M; Selleberg F; Siebner HR
    PLoS One; 2018; 13(10):e0201162. PubMed ID: 30356315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermittent visuomotor processing in the human cerebellum, parietal cortex, and premotor cortex.
    Vaillancourt DE; Mayka MA; Corcos DM
    J Neurophysiol; 2006 Feb; 95(2):922-31. PubMed ID: 16267114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complex motor task associated with non-linear BOLD responses in cerebro-cortical areas and cerebellum.
    Alahmadi AA; Samson RS; Gasston D; Pardini M; Friston KJ; D'Angelo E; Toosy AT; Wheeler-Kingshott CA
    Brain Struct Funct; 2016 Jun; 221(5):2443-58. PubMed ID: 25921976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relationship between brain activity and peak grip force is modulated by corticospinal system integrity after subcortical stroke.
    Ward NS; Newton JM; Swayne OB; Lee L; Frackowiak RS; Thompson AJ; Greenwood RJ; Rothwell JC
    Eur J Neurosci; 2007 Mar; 25(6):1865-73. PubMed ID: 17432972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential fronto-parietal activation depending on force used in a precision grip task: an fMRI study.
    Ehrsson HH; Fagergren E; Forssberg H
    J Neurophysiol; 2001 Jun; 85(6):2613-23. PubMed ID: 11387405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of lateral premotor-cerebellar-parietal circuits in motor sequence control: a parametric fMRI study.
    Haslinger B; Erhard P; Weilke F; Ceballos-Baumann AO; Bartenstein P; Gräfin von Einsiedel H; Schwaiger M; Conrad B; Boecker H
    Brain Res Cogn Brain Res; 2002 Apr; 13(2):159-68. PubMed ID: 11958958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inferior frontal gyrus links visual and motor cortices during a visuomotor precision grip force task.
    Papadelis C; Arfeller C; Erla S; Nollo G; Cattaneo L; Braun C
    Brain Res; 2016 Nov; 1650():252-266. PubMed ID: 27641995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical activity in precision- versus power-grip tasks: an fMRI study.
    Ehrsson HH; Fagergren A; Jonsson T; Westling G; Johansson RS; Forssberg H
    J Neurophysiol; 2000 Jan; 83(1):528-36. PubMed ID: 10634893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural basis for the processes that underlie visually guided and internally guided force control in humans.
    Vaillancourt DE; Thulborn KR; Corcos DM
    J Neurophysiol; 2003 Nov; 90(5):3330-40. PubMed ID: 12840082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supplementary motor area and anterior intraparietal area integrate fine-graded timing and force control during precision grip.
    Haller S; Chapuis D; Gassert R; Burdet E; Klarhöfer M
    Eur J Neurosci; 2009 Dec; 30(12):2401-6. PubMed ID: 20092581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoding grip type and action goal during the observation of reaching-grasping actions: A multivariate fMRI study.
    Errante A; Ziccarelli S; Mingolla GP; Fogassi L
    Neuroimage; 2021 Nov; 243():118511. PubMed ID: 34450263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human brain activity in the control of fine static precision grip forces: an fMRI study.
    Kuhtz-Buschbeck JP; Ehrsson HH; Forssberg H
    Eur J Neurosci; 2001 Jul; 14(2):382-90. PubMed ID: 11553288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task.
    Rektor I; Sochůrková D; Bocková M
    Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain mechanisms for preparing increasingly complex sensory to motor transformations.
    Gorbet DJ; Staines WR; Sergio LE
    Neuroimage; 2004 Nov; 23(3):1100-11. PubMed ID: 15528110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Network dynamics mediating ipsilateral motor cortex activity during unimanual actions.
    Verstynen T; Ivry RB
    J Cogn Neurosci; 2011 Sep; 23(9):2468-80. PubMed ID: 21268666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.