These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 22110047)

  • 1. Polish artificial heart program.
    El Fray M; Czugala M
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2012; 4(3):322-8. PubMed ID: 22110047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Tissue reaction to implanted polyurethane designed for parts of the artificial heart].
    Staniszewska-Kuś J; Paluch D; Krzemień-Dabrowska A; Zywicka B; Solski L
    Polim Med; 1995; 25(3-4):3-18. PubMed ID: 8610064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo evaluations of a new thromboresistant polyurethane for artificial heart blood pumps.
    Farrar DJ; Litwak P; Lawson JH; Ward RS; White KA; Robinson AJ; Rodvien R; Hill JD
    J Thorac Cardiovasc Surg; 1988 Feb; 95(2):191-200. PubMed ID: 3339889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term in vivo biostability of poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomers.
    Simmons A; Hyvarinen J; Odell RA; Martin DJ; Gunatillake PA; Noble KR; Poole-Warren LA
    Biomaterials; 2004 Sep; 25(20):4887-900. PubMed ID: 15109849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermoplastic Elastomers: Materials for Heart Assist Devices.
    Piegat A; Fray ME
    Polim Med; 2016; 46(1):79-87. PubMed ID: 28397422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials.
    Santerre JP; Woodhouse K; Laroche G; Labow RS
    Biomaterials; 2005 Dec; 26(35):7457-70. PubMed ID: 16024077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A nanostructured carbon-reinforced polyisobutylene-based thermoplastic elastomer.
    Puskas JE; Foreman-Orlowski EA; Lim GT; Porosky SE; Evancho-Chapman MM; Schmidt SP; El Fray M; Piatek M; Prowans P; Lovejoy K
    Biomaterials; 2010 Mar; 31(9):2477-88. PubMed ID: 20034664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth properties of cultured human endothelial cells on differently coated artificial heart materials.
    Zilla P; Fasol R; Grimm M; Fischlein T; Eberl T; Preiss P; Krupicka O; von Oppell U; Deutsch M
    J Thorac Cardiovasc Surg; 1991 Apr; 101(4):671-80. PubMed ID: 1901123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The artificial heart research program in Berlin, Germany.
    Bucherl ES
    J Heart Transplant; 1985; 4(5):510-7. PubMed ID: 2956396
    [No Abstract]   [Full Text] [Related]  

  • 10. Biomedical application of commercial polymers and novel polyisobutylene-based thermoplastic elastomers for soft tissue replacement.
    Puskas JE; Chen Y
    Biomacromolecules; 2004; 5(4):1141-54. PubMed ID: 15244424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new generation of high flex life polyurethane urea for polymer heart valve--studies on in vivo biocompatibility and biodurability.
    Thomas V; Jayabalan M
    J Biomed Mater Res A; 2009 Apr; 89(1):192-205. PubMed ID: 18431755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in Waterborne Polyurethane-Based Biomaterials for Biomedical Applications.
    Shin EJ; Choi SM
    Adv Exp Med Biol; 2018; 1077():251-283. PubMed ID: 30357693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo biocompatibility of sulfonated PEO-grafted polyurethanes for polymer heart valve and vascular graft.
    Han DK; Park K; Park KD; Ahn KD; Kim YH
    Artif Organs; 2006 Dec; 30(12):955-9. PubMed ID: 17181836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cholesterol-modified polyurethane valve cusps demonstrate blood outgrowth endothelial cell adhesion post-seeding in vitro and in vivo.
    Stachelek SJ; Alferiev I; Connolly JM; Sacks M; Hebbel RP; Bianco R; Levy RJ
    Ann Thorac Surg; 2006 Jan; 81(1):47-55. PubMed ID: 16368333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomedical applications of polyurethanes: a review of past promises, present realities, and a vibrant future.
    Zdrahala RJ; Zdrahala IJ
    J Biomater Appl; 1999 Jul; 14(1):67-90. PubMed ID: 10405885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyurethane unicondylar knee prostheses: simulator wear tests and lubrication studies.
    Scholes SC; Unsworth A; Jones E
    Phys Med Biol; 2007 Jan; 52(1):197-212. PubMed ID: 17183136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyurethane heart valves: past, present and future.
    Kütting M; Roggenkamp J; Urban U; Schmitz-Rode T; Steinseifer U
    Expert Rev Med Devices; 2011 Mar; 8(2):227-33. PubMed ID: 21381912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial heart driven by an automatic driving system.
    Unger F; Deutsch M; Eckersberger F; Losert U; Stellwag F; Thoma H; Wolner E; Polzer K; Navratil J
    Med Instrum; 1977; 11(4):208-11. PubMed ID: 895594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Medical applications of polymeric materials.
    Bruck SD
    Med Prog Technol; 1982; 9(1):1-16. PubMed ID: 6752684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomembrane mimetic polymer poly (2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) at the interface of polyurethane surfaces.
    Lee I; Kobayashi K; Sun HY; Takatani S; Zhong LG
    J Biomed Mater Res A; 2007 Aug; 82(2):316-22. PubMed ID: 17295222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.