These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 22110429)

  • 1. Spike-timing dependent plasticity and feed-forward input oscillations produce precise and invariant spike phase-locking.
    Muller L; Brette R; Gutkin B
    Front Comput Neurosci; 2011; 5():45. PubMed ID: 22110429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hebbian Spike-Timing Dependent Plasticity at the Cerebellar Input Stage.
    Sgritta M; Locatelli F; Soda T; Prestori F; D'Angelo EU
    J Neurosci; 2017 Mar; 37(11):2809-2823. PubMed ID: 28188217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oscillations, phase-of-firing coding, and spike timing-dependent plasticity: an efficient learning scheme.
    Masquelier T; Hugues E; Deco G; Thorpe SJ
    J Neurosci; 2009 Oct; 29(43):13484-93. PubMed ID: 19864561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oscillations via Spike-Timing Dependent Plasticity in a Feed-Forward Model.
    Luz Y; Shamir M
    PLoS Comput Biol; 2016 Apr; 12(4):e1004878. PubMed ID: 27082118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral analysis of input spike trains by spike-timing-dependent plasticity.
    Gilson M; Fukai T; Burkitt AN
    PLoS Comput Biol; 2012; 8(7):e1002584. PubMed ID: 22792056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Partial Breakdown of Input Specificity of STDP at Individual Synapses Promotes New Learning.
    Volgushev M; Chen JY; Ilin V; Goz R; Chistiakova M; Bazhenov M
    J Neurosci; 2016 Aug; 36(34):8842-55. PubMed ID: 27559167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. I. Input selectivity--strengthening correlated input pathways.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):81-102. PubMed ID: 19536560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What can a neuron learn with spike-timing-dependent plasticity?
    Legenstein R; Naeger C; Maass W
    Neural Comput; 2005 Nov; 17(11):2337-82. PubMed ID: 16156932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity.
    Florian RV
    Neural Comput; 2007 Jun; 19(6):1468-502. PubMed ID: 17444757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of synaptic plasticity by the coactivation of spatially distinct synaptic inputs in rat hippocampal CA1 apical dendrites.
    Kondo M; Kitajima T; Fujii S; Tsukada M; Aihara T
    Brain Res; 2013 Aug; 1526():1-14. PubMed ID: 23711890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oscillation-Driven Spike-Timing Dependent Plasticity Allows Multiple Overlapping Pattern Recognition in Inhibitory Interneuron Networks.
    Garrido JA; Luque NR; Tolu S; D'Angelo E
    Int J Neural Syst; 2016 Aug; 26(5):1650020. PubMed ID: 27079422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Malleability of spike-timing-dependent plasticity at the CA3-CA1 synapse.
    Wittenberg GM; Wang SS
    J Neurosci; 2006 Jun; 26(24):6610-7. PubMed ID: 16775149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptic Plasticity in Memristive Artificial Synapses and Their Robustness Against Noisy Inputs.
    Du N; Zhao X; Chen Z; Choubey B; Di Ventra M; Skorupa I; Bürger D; Schmidt H
    Front Neurosci; 2021; 15():660894. PubMed ID: 34335153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic Hebbian Cross-Correlation Learning Resolves the Spike Timing Dependent Plasticity Conundrum.
    Olde Scheper TV; Meredith RM; Mansvelder HD; van Pelt J; van Ooyen A
    Front Comput Neurosci; 2017; 11():119. PubMed ID: 29375358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive and phase selective spike timing dependent plasticity in synaptically coupled neuronal oscillators.
    Kazantsev V; Tyukin I
    PLoS One; 2012; 7(3):e30411. PubMed ID: 22412830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback.
    Legenstein R; Pecevski D; Maass W
    PLoS Comput Biol; 2008 Oct; 4(10):e1000180. PubMed ID: 18846203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spike-timing precision and neuronal synchrony are enhanced by an interaction between synaptic inhibition and membrane oscillations in the amygdala.
    Ryan SJ; Ehrlich DE; Jasnow AM; Daftary S; Madsen TE; Rainnie DG
    PLoS One; 2012; 7(4):e35320. PubMed ID: 22563382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spike timing-dependent plasticity as the origin of the formation of clustered synaptic efficacy engrams.
    Iannella NL; Launey T; Tanaka S
    Front Comput Neurosci; 2010; 4():. PubMed ID: 20725522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endocannabinoids mediate bidirectional striatal spike-timing-dependent plasticity.
    Cui Y; Paillé V; Xu H; Genet S; Delord B; Fino E; Berry H; Venance L
    J Physiol; 2015 Jul; 593(13):2833-49. PubMed ID: 25873197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spike-timing-dependent plasticity: the relationship to rate-based learning for models with weight dynamics determined by a stable fixed point.
    Burkitt AN; Meffin H; Grayden DB
    Neural Comput; 2004 May; 16(5):885-940. PubMed ID: 15070504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.