These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 22110578)

  • 1. The proprioceptive map of the arm is systematic and stable, but idiosyncratic.
    Rincon-Gonzalez L; Buneo CA; Helms Tillery SI
    PLoS One; 2011; 6(11):e25214. PubMed ID: 22110578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Tactile Sensory Substitution on the Proprioceptive Error Map of the Arm.
    Tanner J; Orthlieb G; Shumate D; Helms Tillery S
    Front Neurosci; 2021; 15():586740. PubMed ID: 34305509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping proprioception across a 2D horizontal workspace.
    Wilson ET; Wong J; Gribble PL
    PLoS One; 2010 Jul; 5(7):e11851. PubMed ID: 20686612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interaction of visual and proprioceptive inputs in pointing to actual and remembered targets in Parkinson's disease.
    Adamovich SV; Berkinblit MB; Hening W; Sage J; Poizner H
    Neuroscience; 2001; 104(4):1027-41. PubMed ID: 11457588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between tactile and proprioceptive representations in haptics.
    Rincon-Gonzalez L; Naufel SN; Santos VJ; Helms Tillery S
    J Mot Behav; 2012; 44(6):391-401. PubMed ID: 23237463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vibrotactile information improves proprioceptive reaching target localization.
    Mikula L; Sahnoun S; Pisella L; Blohm G; Khan AZ
    PLoS One; 2018; 13(7):e0199627. PubMed ID: 29979697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Somatosensory target information is used for reaching but not for saccadic eye movements.
    Goettker A; Fiehler K; Voudouris D
    J Neurophysiol; 2020 Oct; 124(4):1092-1102. PubMed ID: 32845193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seeing and feeling for self and other: proprioceptive spatial location determines multisensory enhancement of touch.
    Cardini F; Haggard P; Ladavas E
    Cognition; 2013 Apr; 127(1):84-92. PubMed ID: 23376293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proprioceptive Acuity is Enhanced During Arm Movements Compared to When the Arm is Stationary: A Study of Young and Older Adults.
    Coffman CR; Capaday C; Darling WG
    Neuroscience; 2021 Jul; 466():222-234. PubMed ID: 33905823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The hidden hand is perceived closer to midline.
    Qureshi HG; Butler AA; Kerr GK; Gandevia SC; Héroux ME
    Exp Brain Res; 2019 Jul; 237(7):1773-1779. PubMed ID: 31037326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of fingertip contact on illusory arm movements.
    Rabin E; Gordon AM
    J Appl Physiol (1985); 2004 Apr; 96(4):1555-60. PubMed ID: 14698993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gaze-centered coding of proprioceptive reach targets after effector movement: Testing the impact of online information, time of movement, and target distance.
    Mueller S; Fiehler K
    PLoS One; 2017; 12(7):e0180782. PubMed ID: 28678886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Touch as an auxiliary proprioceptive cue for movement control.
    Moscatelli A; Bianchi M; Ciotti S; Bettelani GC; Parise CV; Lacquaniti F; Bicchi A
    Sci Adv; 2019 Jun; 5(6):eaaw3121. PubMed ID: 31183406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proprioceptive localization of the left and right hands.
    Jones SA; Cressman EK; Henriques DY
    Exp Brain Res; 2010 Jul; 204(3):373-83. PubMed ID: 19921158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Afferent motor feedback determines the perceived location of tactile stimuli in the external space presented to the moving arm.
    Maij F; Wing AM; Medendorp WP
    J Neurophysiol; 2017 Jul; 118(1):187-193. PubMed ID: 28356475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial bias in estimating the position of visual and proprioceptive targets.
    Liu Y; Sexton BM; Block HJ
    J Neurophysiol; 2018 May; 119(5):1879-1888. PubMed ID: 29465330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixed body- and gaze-centered coding of proprioceptive reach targets after effector movement.
    Mueller S; Fiehler K
    Neuropsychologia; 2016 Jul; 87():63-73. PubMed ID: 27157885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effector movement triggers gaze-dependent spatial coding of tactile and proprioceptive-tactile reach targets.
    Mueller S; Fiehler K
    Neuropsychologia; 2014 Sep; 62():184-93. PubMed ID: 25084225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High proprioceptive acuity in slow and fast hand movements.
    Yoss AL; Zuck BI; Yem JA; Darling WG
    Exp Brain Res; 2022 Jun; 240(6):1791-1800. PubMed ID: 35426512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learned rather than online relative weighting of visual-proprioceptive sensory cues.
    Mikula L; Gaveau V; Pisella L; Khan AZ; Blohm G
    J Neurophysiol; 2018 May; 119(5):1981-1992. PubMed ID: 29465322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.