BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 22110640)

  • 1. Amino acids involved in polyphosphate synthesis and its mobilization are distinct in polyphosphate kinase-1 from Mycobacterium tuberculosis.
    Mittal P; Karthikeyan S; Chakraborti PK
    PLoS One; 2011; 6(11):e27398. PubMed ID: 22110640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyphosphate kinase as a nucleoside diphosphate kinase in Escherichia coli and Pseudomonas aeruginosa.
    Kuroda A; Kornberg A
    Proc Natl Acad Sci U S A; 1997 Jan; 94(2):439-42. PubMed ID: 9012801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyphosphate kinase 2: a modulator of nucleoside diphosphate kinase activity in mycobacteria.
    Sureka K; Sanyal S; Basu J; Kundu M
    Mol Microbiol; 2009 Dec; 74(5):1187-97. PubMed ID: 19843229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The multiple activities of polyphosphate kinase of Escherichia coli and their subunit structure determined by radiation target analysis.
    Tzeng CM; Kornberg A
    J Biol Chem; 2000 Feb; 275(6):3977-83. PubMed ID: 10660553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyphosphate kinase is involved in stress-induced mprAB-sigE-rel signalling in mycobacteria.
    Sureka K; Dey S; Datta P; Singh AK; Dasgupta A; Rodrigue S; Basu J; Kundu M
    Mol Microbiol; 2007 Jul; 65(2):261-76. PubMed ID: 17630969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inorganic polyphosphate and polyphosphate kinase: their novel biological functions and applications.
    Shiba T; Tsutsumi K; Ishige K; Noguchi T
    Biochemistry (Mosc); 2000 Mar; 65(3):315-23. PubMed ID: 10739474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acid residues involved in autophosphorylation and phosphotransfer activities are distinct in nucleoside diphosphate kinase from Mycobacterium tuberculosis.
    Tiwari S; Kishan KV; Chakrabarti T; Chakraborti PK
    J Biol Chem; 2004 Oct; 279(42):43595-603. PubMed ID: 15302878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of Escherichia coli polyphosphate kinase for oligosaccharide synthesis.
    Noguchi T; Shiba T
    Biosci Biotechnol Biochem; 1998 Aug; 62(8):1594-6. PubMed ID: 9757566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyphosphate-dependent synthesis of ATP and ADP by the family-2 polyphosphate kinases in bacteria.
    Nocek B; Kochinyan S; Proudfoot M; Brown G; Evdokimova E; Osipiuk J; Edwards AM; Savchenko A; Joachimiak A; Yakunin AF
    Proc Natl Acad Sci U S A; 2008 Nov; 105(46):17730-5. PubMed ID: 19001261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational design of substrate binding pockets in polyphosphate kinase for use in cost-effective ATP-dependent cascade reactions.
    Cao H; Nie K; Li C; Xu H; Wang F; Tan T; Liu L
    Appl Microbiol Biotechnol; 2017 Jul; 101(13):5325-5332. PubMed ID: 28417169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyphosphate kinase 1, a conserved bacterial enzyme, in a eukaryote, Dictyostelium discoideum, with a role in cytokinesis.
    Zhang H; Gómez-García MR; Shi X; Rao NN; Kornberg A
    Proc Natl Acad Sci U S A; 2007 Oct; 104(42):16486-91. PubMed ID: 17940044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyphosphate:AMP phosphotransferase as a polyphosphate-dependent nucleoside monophosphate kinase in Acinetobacter johnsonii 210A.
    Shiba T; Itoh H; Kameda A; Kobayashi K; Kawazoe Y; Noguchi T
    J Bacteriol; 2005 Mar; 187(5):1859-65. PubMed ID: 15716459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First archaeal inorganic polyphosphate/ATP-dependent NAD kinase, from hyperthermophilic archaeon Pyrococcus horikoshii: cloning, expression, and characterization.
    Sakuraba H; Kawakami R; Ohshima T
    Appl Environ Microbiol; 2005 Aug; 71(8):4352-8. PubMed ID: 16085824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of a polyphosphate kinase and its implications for polyphosphate synthesis.
    Zhu Y; Huang W; Lee SS; Xu W
    EMBO Rep; 2005 Jul; 6(7):681-7. PubMed ID: 15947782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inorganic polyphosphate in the origin and survival of species.
    Brown MR; Kornberg A
    Proc Natl Acad Sci U S A; 2004 Nov; 101(46):16085-7. PubMed ID: 15520374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular characterization of Escherichia coli NAD kinase.
    Kawai S; Mori S; Mukai T; Hashimoto W; Murata K
    Eur J Biochem; 2001 Aug; 268(15):4359-65. PubMed ID: 11488932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyphosphate kinase 1 is required for the pathogenesis process of meningitic Escherichia coli K1 (RS218).
    Peng L; Luo WY; Zhao T; Wan CS; Jiang Y; Chi F; Zhao W; Cao H; Huang SH
    Future Microbiol; 2012 Mar; 7(3):411-23. PubMed ID: 22393893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A polyphosphate kinase (PPK2) widely conserved in bacteria.
    Zhang H; Ishige K; Kornberg A
    Proc Natl Acad Sci U S A; 2002 Dec; 99(26):16678-83. PubMed ID: 12486232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphohistidyl active sites in polyphosphate kinase of Escherichia coli.
    Kumble KD; Ahn K; Kornberg A
    Proc Natl Acad Sci U S A; 1996 Dec; 93(25):14391-5. PubMed ID: 8962061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of an actin-like filament concurrent with the enzymatic synthesis of inorganic polyphosphate.
    Gómez-García MR; Kornberg A
    Proc Natl Acad Sci U S A; 2004 Nov; 101(45):15876-80. PubMed ID: 15496465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.