These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 22110646)
1. MaturePred: efficient identification of microRNAs within novel plant pre-miRNAs. Xuan P; Guo M; Huang Y; Li W; Huang Y PLoS One; 2011; 6(11):e27422. PubMed ID: 22110646 [TBL] [Abstract][Full Text] [Related]
2. PlantMiRNAPred: efficient classification of real and pseudo plant pre-miRNAs. Xuan P; Guo M; Liu X; Huang Y; Li W; Huang Y Bioinformatics; 2011 May; 27(10):1368-76. PubMed ID: 21441575 [TBL] [Abstract][Full Text] [Related]
3. Prediction of plant pre-microRNAs and their microRNAs in genome-scale sequences using structure-sequence features and support vector machine. Meng J; Liu D; Sun C; Luan Y BMC Bioinformatics; 2014 Dec; 15(1):423. PubMed ID: 25547126 [TBL] [Abstract][Full Text] [Related]
4. Computational prediction of the localization of microRNAs within their pre-miRNA. Leclercq M; Diallo AB; Blanchette M Nucleic Acids Res; 2013 Aug; 41(15):7200-11. PubMed ID: 23748953 [TBL] [Abstract][Full Text] [Related]
5. plantMirP: an efficient computational program for the prediction of plant pre-miRNA by incorporating knowledge-based energy features. Yao Y; Ma C; Deng H; Liu Q; Zhang J; Yi M Mol Biosyst; 2016 Oct; 12(10):3124-31. PubMed ID: 27472470 [TBL] [Abstract][Full Text] [Related]
6. miRLocator: Machine Learning-Based Prediction of Mature MicroRNAs within Plant Pre-miRNA Sequences. Cui H; Zhai J; Ma C PLoS One; 2015; 10(11):e0142753. PubMed ID: 26558614 [TBL] [Abstract][Full Text] [Related]
7. ASRmiRNA: Abiotic Stress-Responsive miRNA Prediction in Plants by Using Machine Learning Algorithms with Pseudo Meher PK; Begam S; Sahu TK; Gupta A; Kumar A; Kumar U; Rao AR; Singh KP; Dhankher OP Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163534 [TBL] [Abstract][Full Text] [Related]
8. miRLocator: A Python Implementation and Web Server for Predicting miRNAs from Pre-miRNA Sequences. Zhang T; Ju L; Zhai J; Song Y; Song J; Ma C Methods Mol Biol; 2019; 1932():89-97. PubMed ID: 30701493 [TBL] [Abstract][Full Text] [Related]
9. Adaboost-SVM-based probability algorithm for the prediction of all mature miRNA sites based on structured-sequence features. Wang Y; Ru J; Jiang Y; Zhang J Sci Rep; 2019 Feb; 9(1):1521. PubMed ID: 30728425 [TBL] [Abstract][Full Text] [Related]
10. MatureBayes: a probabilistic algorithm for identifying the mature miRNA within novel precursors. Gkirtzou K; Tsamardinos I; Tsakalides P; Poirazi P PLoS One; 2010 Aug; 5(8):e11843. PubMed ID: 20700506 [TBL] [Abstract][Full Text] [Related]
11. MatPred: Computational Identification of Mature MicroRNAs within Novel Pre-MicroRNAs. Li J; Wang Y; Wang L; Feng W; Luan K; Dai X; Xu C; Meng X; Zhang Q; Liang H Biomed Res Int; 2015; 2015():546763. PubMed ID: 26682221 [TBL] [Abstract][Full Text] [Related]
12. miRNAFinder: A comprehensive web resource for plant Pre-microRNA classification. Lokuge S; Jayasundara S; Ihalagedara P; Kahanda I; Herath D Biosystems; 2022 Jun; 215-216():104662. PubMed ID: 35306049 [TBL] [Abstract][Full Text] [Related]
13. Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. Xue C; Li F; He T; Liu GP; Li Y; Zhang X BMC Bioinformatics; 2005 Dec; 6():310. PubMed ID: 16381612 [TBL] [Abstract][Full Text] [Related]
14. MiRenSVM: towards better prediction of microRNA precursors using an ensemble SVM classifier with multi-loop features. Ding J; Zhou S; Guan J BMC Bioinformatics; 2010 Dec; 11 Suppl 11(Suppl 11):S11. PubMed ID: 21172046 [TBL] [Abstract][Full Text] [Related]
15. Bioinformatics Study of Structural Patterns in Plant MicroRNA Precursors. Miskiewicz J; Tomczyk K; Mickiewicz A; Sarzynska J; Szachniuk M Biomed Res Int; 2017; 2017():6783010. PubMed ID: 28280737 [TBL] [Abstract][Full Text] [Related]
16. PlantMirP2: An Accurate, Fast and Easy-To-Use Program for Plant Pre-miRNA and miRNA Prediction. Fan D; Yao Y; Yi M Genes (Basel); 2021 Aug; 12(8):. PubMed ID: 34440454 [TBL] [Abstract][Full Text] [Related]
17. MiRFinder: an improved approach and software implementation for genome-wide fast microRNA precursor scans. Huang TH; Fan B; Rothschild MF; Hu ZL; Li K; Zhao SH BMC Bioinformatics; 2007 Sep; 8():341. PubMed ID: 17868480 [TBL] [Abstract][Full Text] [Related]
18. Computational prediction and experimental verification of miRNAs in Panicum miliaceum L. Wu Y; Du J; Wang X; Fang X; Shan W; Liang Z Sci China Life Sci; 2012 Sep; 55(9):807-17. PubMed ID: 23015130 [TBL] [Abstract][Full Text] [Related]
19. microRPM: a microRNA prediction model based only on plant small RNA sequencing data. Tseng KC; Chiang-Hsieh YF; Pai H; Chow CN; Lee SC; Zheng HQ; Kuo PL; Li GZ; Hung YC; Lin NS; Chang WC Bioinformatics; 2018 Apr; 34(7):1108-1115. PubMed ID: 29136092 [TBL] [Abstract][Full Text] [Related]
20. mirExplorer: detecting microRNAs from genome and next generation sequencing data using the AdaBoost method with transition probability matrix and combined features. Guan DG; Liao JY; Qu ZH; Zhang Y; Qu LH RNA Biol; 2011; 8(5):922-34. PubMed ID: 21881406 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]