These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 22111547)

  • 1. A high quality factor carbon nanotube mechanical resonator at 39 GHz.
    Laird EA; Pei F; Tang W; Steele GA; Kouwenhoven LP
    Nano Lett; 2012 Jan; 12(1):193-7. PubMed ID: 22111547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Few-hundred GHz carbon nanotube nanoelectromechanical systems (NEMS).
    Island JO; Tayari V; McRae AC; Champagne AR
    Nano Lett; 2012 Sep; 12(9):4564-9. PubMed ID: 22888989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon nanotubes as ultrahigh quality factor mechanical resonators.
    Hüttel AK; Steele GA; Witkamp B; Poot M; Kouwenhoven LP; van der Zant HS
    Nano Lett; 2009 Jul; 9(7):2547-52. PubMed ID: 19492820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capacitive spring softening in single-walled carbon nanotube nanoelectromechanical resonators.
    Wu CC; Zhong Z
    Nano Lett; 2011 Apr; 11(4):1448-51. PubMed ID: 21428322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 1 GHz integrated circuit with carbon nanotube interconnects and silicon transistors.
    Close GF; Yasuda S; Paul B; Fujita S; Wong HS
    Nano Lett; 2008 Feb; 8(2):706-9. PubMed ID: 18269256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband electrical characterization of multiwalled carbon nanotubes and contacts.
    Rice P; Wallis TM; Russek SE; Kabos P
    Nano Lett; 2007 Apr; 7(4):1086-90. PubMed ID: 17375962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single carbon nanotube transistor at GHz frequency.
    Chaste J; Lechner L; Morfin P; Fève G; Kontos T; Berroir JM; Glattli DC; Happy H; Hakonen P; Plaçais B
    Nano Lett; 2008 Feb; 8(2):525-8. PubMed ID: 18229967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An embedded PDMS nanocomposite strain sensor toward biomedical applications.
    Liu CX; Choi JW
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6391-4. PubMed ID: 19964694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable slow and fast light device based on a carbon nanotube resonator.
    Li JJ; Zhu KD
    Opt Express; 2012 Mar; 20(6):5840-8. PubMed ID: 22418461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Piezoresistive characteristics of MWNT nanocomposites and fabrication as a polymer pressure sensor.
    Gau C; Ko HS; Chen HT
    Nanotechnology; 2009 May; 20(18):185503. PubMed ID: 19420615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fully tunable single-walled carbon nanotube diode.
    Liu CH; Wu CC; Zhong Z
    Nano Lett; 2011 Apr; 11(4):1782-5. PubMed ID: 21413780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable, broadband nonlinear nanomechanical resonator.
    Cho H; Yu MF; Vakakis AF; Bergman LA; McFarland DM
    Nano Lett; 2010 May; 10(5):1793-8. PubMed ID: 20384349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study of EMI shielding properties of carbon nanofiber and multi-walled carbon nanotube filled polymer composites.
    Yang Y; Gupta MC; Dudley KL; Lawrence RW
    J Nanosci Nanotechnol; 2005 Jun; 5(6):927-31. PubMed ID: 16060155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon nanotube nanoelectromechanical systems as magnetometers for single-molecule magnets.
    Ganzhorn M; Klyatskaya S; Ruben M; Wernsdorfer W
    ACS Nano; 2013 Jul; 7(7):6225-36. PubMed ID: 23802618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Terahertz time-domain measurement of ballistic electron resonance in a single-walled carbon nanotube.
    Zhong Z; Gabor NM; Sharping JE; Gaeta AL; McEuen PL
    Nat Nanotechnol; 2008 Apr; 3(4):201-5. PubMed ID: 18654503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Q X-band distributed Bragg resonator utilizing an aperiodic alumina plate arrangement.
    Bale S; Everard J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):66-73. PubMed ID: 20040428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ferroelectric-carbon nanotube memory devices.
    Kumar A; Shivareddy SG; Correa M; Resto O; Choi Y; Cole MT; Katiyar RS; Scott JF; Amaratunga GA; Lu H; Gruverman A
    Nanotechnology; 2012 Apr; 23(16):165702. PubMed ID: 22460805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The performance of in situ grown Schottky-barrier single wall carbon nanotube field-effect transistors.
    Zhou Z; Eres G; Jin R; Subedi A; Mandrus D; Kim EH
    Nanotechnology; 2009 Feb; 20(8):085709. PubMed ID: 19417470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diameter-dependent dissipation of vibration energy of cantilevered multiwall carbon nanotubes.
    Sawaya S; Arie T; Akita S
    Nanotechnology; 2011 Apr; 22(16):165702. PubMed ID: 21393815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissipation and fluctuations in nanoelectromechanical systems based on carbon nanotubes.
    Lebedeva IV; Knizhnik AA; Popov AM; Lozovik YE; Potapkin BV
    Nanotechnology; 2009 Mar; 20(10):105202. PubMed ID: 19417512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.