These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 22111988)

  • 21. Position controlled nanowire growth through Au nanoparticles synthesized by galvanic reaction.
    Tseng CH; Tambe MJ; Lim SK; Smith MJ; Gradecak S
    Nanotechnology; 2010 Apr; 21(16):165605. PubMed ID: 20351413
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Truncated tetrahedron seed crystals initiating stereoaligned growth of FeSi nanowires.
    Kim SI; Yoon H; Seo K; Yoo Y; Lee S; Kim B
    ACS Nano; 2012 Oct; 6(10):8652-7. PubMed ID: 22966939
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The nature of catalyst particles and growth mechanisms of GaN nanowires grown by Ni-assisted metal-organic chemical vapor deposition.
    Weng X; Burke RA; Redwing JM
    Nanotechnology; 2009 Feb; 20(8):085610. PubMed ID: 19417458
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crystal structure transfer in core/shell nanowires.
    Algra RE; Hocevar M; Verheijen MA; Zardo I; Immink GG; van Enckevort WJ; Abstreiter G; Kouwenhoven LP; Vlieg E; Bakkers EP
    Nano Lett; 2011 Apr; 11(4):1690-4. PubMed ID: 21417242
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transport modulation in Ge/Si core/shell nanowires through controlled synthesis of doped Si shells.
    Zhao Y; Smith JT; Appenzeller J; Yang C
    Nano Lett; 2011 Apr; 11(4):1406-11. PubMed ID: 21417251
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unconventional growth mechanism for monolithic integration of III-V on silicon.
    Ng KW; Ko WS; Tran TT; Chen R; Nazarenko MV; Lu F; Dubrovskii VG; Kamp M; Forchel A; Chang-Hasnain CJ
    ACS Nano; 2013 Jan; 7(1):100-7. PubMed ID: 23240995
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication of gold nanowires by electric-field-induced scanning probe lithography and in situ chemical development.
    Lee WK; Chen S; Chilkoti A; Zauscher S
    Small; 2007 Feb; 3(2):249-54. PubMed ID: 17199247
    [No Abstract]   [Full Text] [Related]  

  • 28. Suspended mechanical structures based on elastic silicon nanowire arrays.
    Paulo AS; Arellano N; Plaza JA; He R; Carraro C; Maboudian R; Howe RT; Bokor J; Yang P
    Nano Lett; 2007 Apr; 7(4):1100-4. PubMed ID: 17375964
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pristine, adherent ultrathin gold nanowires on substrates and between pre-defined contacts via a wet chemical route.
    Kundu P; Chandni U; Ghosh A; Ravishankar N
    Nanoscale; 2012 Jan; 4(2):433-7. PubMed ID: 22130505
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A generic approach for embedded catalyst-supported vertically aligned nanowire growth.
    Chung HS; Jung Y; Zimmerman TJ; Lee SH; Kim JW; Lee SH; Kim SC; Oh KH; Agarwal R
    Nano Lett; 2008 May; 8(5):1328-34. PubMed ID: 18363342
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-throughput dip-pen-nanolithography-based fabrication of Si nanostructures.
    Zhang H; Amro NA; Disawal S; Elghanian R; Shile R; Fragala J
    Small; 2007 Jan; 3(1):81-5. PubMed ID: 17294474
    [No Abstract]   [Full Text] [Related]  

  • 32. Current saturation in field emission from H-passivated Si nanowires.
    Choueib M; Martel R; Cojocaru CS; Ayari A; Vincent P; Purcell ST
    ACS Nano; 2012 Aug; 6(8):7463-71. PubMed ID: 22830630
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temperature effects on the occurrence of long interatomic distances in atomic chains formed from stretched gold nanowires.
    Lagos MJ; Autreto PA; Legoas SB; Sato F; Rodrigues V; Galvao DS; Ugarte D
    Nanotechnology; 2011 Mar; 22(9):095705. PubMed ID: 21270485
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lithographically patterned nanowire electrodeposition: a method for patterning electrically continuous metal nanowires on dielectrics.
    Xiang C; Kung SC; Taggart DK; Yang F; Thompson MA; Güell AG; Yang Y; Penner RM
    ACS Nano; 2008 Sep; 2(9):1939-49. PubMed ID: 19206435
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dopant profiling and surface analysis of silicon nanowires using capacitance-voltage measurements.
    Garnett EC; Tseng YC; Khanal DR; Wu J; Bokor J; Yang P
    Nat Nanotechnol; 2009 May; 4(5):311-4. PubMed ID: 19421217
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Growth mechanism of self-catalyzed group III-V nanowires.
    Mandl B; Stangl J; Hilner E; Zakharov AA; Hillerich K; Dey AW; Samuelson L; Bauer G; Deppert K; Mikkelsen A
    Nano Lett; 2010 Nov; 10(11):4443-9. PubMed ID: 20939507
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Observation of hole accumulation in Ge/Si core/shell nanowires using off-axis electron holography.
    Li L; Smith DJ; Dailey E; Madras P; Drucker J; McCartney MR
    Nano Lett; 2011 Feb; 11(2):493-7. PubMed ID: 21244011
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selective growth of vertical ZnO nanowire arrays using chemically anchored gold nanoparticles.
    Ito D; Jespersen ML; Hutchison JE
    ACS Nano; 2008 Oct; 2(10):2001-6. PubMed ID: 19206444
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel route to the synthesis of silica nanowires without a metal catalyst at room temperature by chemical vapor deposition.
    Park S; Heo J; Kim HJ
    Nano Lett; 2011 Feb; 11(2):740-5. PubMed ID: 21218850
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Growth of carbon nanotubes on Si substrate using Fe catalyst produced by pulsed laser deposition.
    Krishnamurthy S; Donnelly T; McEvoy N; Blau W; Lunney JG; Teh AS; Teo KB; Milne WI
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5748-52. PubMed ID: 19198299
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.