These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
367 related articles for article (PubMed ID: 22112201)
1. Larval nutritional stress affects vector immune traits in adult yellow fever mosquito Aedes aegypti (Stegomyia aegypti). Telang A; Qayum AA; Parker A; Sacchetta BR; Byrnes GR Med Vet Entomol; 2012 Sep; 26(3):271-81. PubMed ID: 22112201 [TBL] [Abstract][Full Text] [Related]
2. Effect of larval density and Sindbis virus infection on immune responses in Aedes aegypti. Kim CH; Muturi EJ J Insect Physiol; 2013 Jun; 59(6):604-10. PubMed ID: 23562781 [TBL] [Abstract][Full Text] [Related]
3. Aedes FADD: a novel death domain-containing protein required for antibacterial immunity in the yellow fever mosquito, Aedes aegypti. Cooper DM; Chamberlain CM; Lowenberger C Insect Biochem Mol Biol; 2009 Jan; 39(1):47-54. PubMed ID: 18977438 [TBL] [Abstract][Full Text] [Related]
4. First report of Stegomyia aegypti (= Aedes aegypti) in Mexico City, Mexico. Kuri-Morales P; Correa-Morales F; González-Acosta C; Sánchez-Tejeda G; Dávalos-Becerril E; Fernanda Juárez-Franco M; Díaz-Quiñonez A; Huerta-Jimenéz H; Mejía-Guevara MD; Moreno-García M; González-Roldán JF Med Vet Entomol; 2017 Jun; 31(2):240-242. PubMed ID: 28106260 [TBL] [Abstract][Full Text] [Related]
5. Blood meal induced microRNA regulates development and immune associated genes in the Dengue mosquito vector, Aedes aegypti. Hussain M; Walker T; O'Neill SL; Asgari S Insect Biochem Mol Biol; 2013 Feb; 43(2):146-52. PubMed ID: 23202267 [TBL] [Abstract][Full Text] [Related]
6. Larval environmental stress alters Aedes aegypti competence for Sindbis virus. Muturi EJ; Kim CH; Alto BW; Berenbaum MR; Schuler MA Trop Med Int Health; 2011 Aug; 16(8):955-64. PubMed ID: 21564427 [TBL] [Abstract][Full Text] [Related]
7. Septic tanks as larval habitats for the mosquitoes Aedes aegypti and Culex quinquefasciatus in Playa-Playita, Puerto Rico. Burke R; Barrera R; Lewis M; Kluchinsky T; Claborn D Med Vet Entomol; 2010 Jun; 24(2):117-23. PubMed ID: 20374477 [TBL] [Abstract][Full Text] [Related]
8. Mosquito-Plasmodium interactions in response to immune activation of the vector. Lowenberger CA; Kamal S; Chiles J; Paskewitz S; Bulet P; Hoffmann JA; Christensen BM Exp Parasitol; 1999 Jan; 91(1):59-69. PubMed ID: 9920043 [TBL] [Abstract][Full Text] [Related]
9. Aedes aegypti (Diptera: Culicidae) in Mauritania: First Report on the Presence of the Arbovirus Mosquito Vector in Nouakchott. Mint Lekweiry K; Ould Ahmedou Salem MS; Ould Brahim K; Ould Lemrabott MA; Brengues C; Faye O; Simard F; Ould Mohamed Salem Boukhary A J Med Entomol; 2015 Jul; 52(4):730-3. PubMed ID: 26335483 [TBL] [Abstract][Full Text] [Related]
10. Increased survivorship following bacterial infection by the mosquito Aedes aegypti as compared to Anopheles gambiae correlates with increased transcriptional induction of antimicrobial peptides. Coggins SA; Estévez-Lao TY; Hillyer JF Dev Comp Immunol; 2012 Jul; 37(3-4):390-401. PubMed ID: 22326457 [TBL] [Abstract][Full Text] [Related]
11. A mosquito juvenile hormone binding protein (mJHBP) regulates the activation of innate immune defenses and hemocyte development. Kim IH; Castillo JC; Aryan A; Martin-Martin I; Nouzova M; Noriega FG; Barletta ABF; Calvo E; Adelman ZN; Ribeiro JMC; Andersen JF PLoS Pathog; 2020 Jan; 16(1):e1008288. PubMed ID: 31961911 [TBL] [Abstract][Full Text] [Related]
12. Larval feeding duration affects ecdysteroid levels and nutritional reserves regulating pupal commitment in the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Telang A; Frame L; Brown MR J Exp Biol; 2007 Mar; 210(Pt 5):854-64. PubMed ID: 17297145 [TBL] [Abstract][Full Text] [Related]
13. Aedes Dronc: a novel ecdysone-inducible caspase in the yellow fever mosquito, Aedes aegypti. Cooper DM; Thi EP; Chamberlain CM; Pio F; Lowenberger C Insect Mol Biol; 2007 Oct; 16(5):563-72. PubMed ID: 17725799 [TBL] [Abstract][Full Text] [Related]
14. Biochemical and cytoimmunological evidence for the control of Aedes aegypti larval trypsin with Aea-TMOF. Borovsky D; Meola SM Arch Insect Biochem Physiol; 2004 Mar; 55(3):124-39. PubMed ID: 14981657 [TBL] [Abstract][Full Text] [Related]
15. Chitosan/siRNA nanoparticle targeting demonstrates a requirement for single-minded during larval and pupal olfactory system development of the vector mosquito Aedes aegypti. Mysore K; Andrews E; Li P; Duman-Scheel M BMC Dev Biol; 2014 Feb; 14():9. PubMed ID: 24552425 [TBL] [Abstract][Full Text] [Related]
16. Larval stress alters dengue virus susceptibility in Aedes aegypti (L.) adult females. Kang DS; Alcalay Y; Lovin DD; Cunningham JM; Eng MW; Chadee DD; Severson DW Acta Trop; 2017 Oct; 174():97-101. PubMed ID: 28648790 [TBL] [Abstract][Full Text] [Related]
17. Imidacloprid impairs the post-embryonic development of the midgut in the yellow fever mosquito Stegomyia aegypti (=Aedes aegypti). Fernandes KM; Gonzaga WG; Pascini TV; Miranda FR; Tomé HV; Serrão JE; Martins GF Med Vet Entomol; 2015 Sep; 29(3):245-54. PubMed ID: 25968596 [TBL] [Abstract][Full Text] [Related]
18. Larval rearing temperature influences the effect of malathion on Aedes aegypti life history traits and immune responses. Muturi EJ Chemosphere; 2013 Aug; 92(9):1111-6. PubMed ID: 23419321 [TBL] [Abstract][Full Text] [Related]
19. Dynamic expression of genes encoding subunits of inward rectifier potassium (Kir) channels in the yellow fever mosquito Aedes aegypti. Yang Z; Statler BM; Calkins TL; Alfaro E; Esquivel CJ; Rouhier MF; Denton JS; Piermarini PM Comp Biochem Physiol B Biochem Mol Biol; 2017 Feb; 204():35-44. PubMed ID: 27836744 [TBL] [Abstract][Full Text] [Related]
20. Survey of the relative prevalence of potential yellow fever vectors in north-west Nigeria. Service MW Bull World Health Organ; 1974; 50(6):487-94. PubMed ID: 4156499 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]