These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 22112269)
1. Characterization of technological features of dry yeast (strain I-7-43) preparation, product of electrofusion between Saccharomyces cerevisiae and Saccharomyces diastaticus, in industrial application. Kotarska K; Kłosowski G; Czupryński B Enzyme Microb Technol; 2011 Jun; 49(1):38-43. PubMed ID: 22112269 [TBL] [Abstract][Full Text] [Related]
2. Raw starch fermentation to ethanol by an industrial distiller's yeast strain of Saccharomyces cerevisiae expressing glucoamylase and α-amylase genes. Kim HR; Im YK; Ko HM; Chin JE; Kim IC; Lee HB; Bai S Biotechnol Lett; 2011 Aug; 33(8):1643-8. PubMed ID: 21479627 [TBL] [Abstract][Full Text] [Related]
3. Characterization of very high gravity ethanol fermentation of corn mash. Effect of glucoamylase dosage, pre-saccharification and yeast strain. Devantier R; Pedersen S; Olsson L Appl Microbiol Biotechnol; 2005 Sep; 68(5):622-9. PubMed ID: 15678305 [TBL] [Abstract][Full Text] [Related]
4. Studies on high concentration ethanol fermentation of raw ground corn by Saccharomyces sp. H0. Chi Z; Liu Z Chin J Biotechnol; 1994; 10(2):113-9. PubMed ID: 7803687 [TBL] [Abstract][Full Text] [Related]
5. Fermentation of starch to ethanol by an amylolytic yeast Saccharomyces diastaticus SM-10. Sharma S; Pandey M; Saharan B Indian J Exp Biol; 2002 Mar; 40(3):325-8. PubMed ID: 12635704 [TBL] [Abstract][Full Text] [Related]
6. Repeated fermentation from raw starch using Saccharomyces cerevisiae displaying both glucoamylase and α-amylase. Yamakawa S; Yamada R; Tanaka T; Ogino C; Kondo A Enzyme Microb Technol; 2012 May; 50(6-7):343-7. PubMed ID: 22500903 [TBL] [Abstract][Full Text] [Related]
7. High-level ethanol production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell-surface glucoamylase. Kondo A; Shigechi H; Abe M; Uyama K; Matsumoto T; Takahashi S; Ueda M; Tanaka A; Kishimoto M; Fukuda H Appl Microbiol Biotechnol; 2002 Mar; 58(3):291-6. PubMed ID: 11935178 [TBL] [Abstract][Full Text] [Related]
8. Reduction of water consumption in bioethanol production from triticale by recycling the stillage liquid phase. Gumienna M; Lasik M; Szambelan K; Czarnecki Z Acta Sci Pol Technol Aliment; 2011; 10(4):467-74. PubMed ID: 22230928 [TBL] [Abstract][Full Text] [Related]
9. Optimization of ethanol production from starch by an amylolytic nuclear petite Saccharomyces cerevisiae strain. Toksoy Oner E Yeast; 2006 Sep; 23(12):849-56. PubMed ID: 17001624 [TBL] [Abstract][Full Text] [Related]
10. Engineering Saccharomyces cerevisiae for direct conversion of raw, uncooked or granular starch to ethanol. Görgens JF; Bressler DC; van Rensburg E Crit Rev Biotechnol; 2015; 35(3):369-91. PubMed ID: 24666118 [TBL] [Abstract][Full Text] [Related]
11. Alcohol production from starch by mixed cultures of Aspergillus awamori and immobilized Saccharomyces cerevisiae at different agitation speeds. Farid MA; El-Enshasy HA; Noor El-Deen AM J Basic Microbiol; 2002; 42(3):162-71. PubMed ID: 12111743 [TBL] [Abstract][Full Text] [Related]
12. Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and alpha-amylase. Shigechi H; Koh J; Fujita Y; Matsumoto T; Bito Y; Ueda M; Satoh E; Fukuda H; Kondo A Appl Environ Microbiol; 2004 Aug; 70(8):5037-40. PubMed ID: 15294847 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous raw starch hydrolysis and ethanol fermentation by glucoamylase from Rhizoctonia solani and Saccharomyces cerevisiae. Singh D; Dahiya JS; Nigam P J Basic Microbiol; 1995; 35(2):117-21. PubMed ID: 7783000 [TBL] [Abstract][Full Text] [Related]
14. Ethanol production from rice winery waste-rice wine cake by simultaneous saccharification and fermentation without cooking. Vu VH; Kim K J Microbiol Biotechnol; 2009 Oct; 19(10):1161-8. PubMed ID: 19884775 [TBL] [Abstract][Full Text] [Related]
15. Starch fermentation by recombinant saccharomyces cerevisiae strains expressing the alpha-amylase and glucoamylase genes from lipomyces kononenkoae and saccharomycopsis fibuligera. Eksteen JM; Van Rensburg P; Cordero Otero RR; Pretorius IS Biotechnol Bioeng; 2003 Dec; 84(6):639-46. PubMed ID: 14595776 [TBL] [Abstract][Full Text] [Related]
16. Improving the performance of a continuous process for the production of ethanol from starch. Trovati J; Giordano RC; Giordano RL Appl Biochem Biotechnol; 2009 May; 156(1-3):76-90. PubMed ID: 19240991 [TBL] [Abstract][Full Text] [Related]
17. Kinetics of enhanced ethanol productivity using raw starch hydrolyzing glucoamylase from Aspergillus niger mutant produced in solid state fermentation. Rajoka MI; Yasmin A; Latif F Lett Appl Microbiol; 2004; 39(1):13-8. PubMed ID: 15189282 [TBL] [Abstract][Full Text] [Related]
18. Construction of a direct starch-fermenting industrial strain of Saccharomyces cerevisiae producing glucoamylase, alpha-amylase and debranching enzyme. Kim JH; Kim HR; Lim MH; Ko HM; Chin JE; Lee HB; Kim IC; Bai S Biotechnol Lett; 2010 May; 32(5):713-9. PubMed ID: 20131079 [TBL] [Abstract][Full Text] [Related]
19. Consolidated bioprocessing of starchy substrates into ethanol by industrial Saccharomyces cerevisiae strains secreting fungal amylases. Favaro L; Viktor MJ; Rose SH; Viljoen-Bloom M; van Zyl WH; Basaglia M; Cagnin L; Casella S Biotechnol Bioeng; 2015 Sep; 112(9):1751-60. PubMed ID: 25786804 [TBL] [Abstract][Full Text] [Related]
20. Fermentation of high concentrations of lactose to ethanol by engineered flocculent Saccharomyces cerevisiae. Guimarães PM; Teixeira JA; Domingues L Biotechnol Lett; 2008 Nov; 30(11):1953-8. PubMed ID: 18575804 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]