These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
327 related articles for article (PubMed ID: 22112279)
1. Development of an industrial ethanol-producing yeast strain for efficient utilization of cellobiose. Guo ZP; Zhang L; Ding ZY; Gu ZH; Shi GY Enzyme Microb Technol; 2011 Jun; 49(1):105-12. PubMed ID: 22112279 [TBL] [Abstract][Full Text] [Related]
2. Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains. van Rooyen R; Hahn-Hägerdal B; La Grange DC; van Zyl WH J Biotechnol; 2005 Nov; 120(3):284-95. PubMed ID: 16084620 [TBL] [Abstract][Full Text] [Related]
3. Construction of the industrial ethanol-producing strain of Saccharomyces cerevisiae able to ferment cellobiose and melibiose. Zhang L; Guo ZP; Ding ZY; Wang ZX; Shi GY Prikl Biokhim Mikrobiol; 2012; 48(2):243-8. PubMed ID: 22586919 [TBL] [Abstract][Full Text] [Related]
4. Lactic fermentation of cellobiose by a yeast strain displaying beta-glucosidase on the cell surface. Tokuhiro K; Ishida N; Kondo A; Takahashi H Appl Microbiol Biotechnol; 2008 Jun; 79(3):481-8. PubMed ID: 18443785 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous saccharification and fermentation of acid-pretreated corncobs with a recombinant Saccharomyces cerevisiae expressing beta-glucosidase. Shen Y; Zhang Y; Ma T; Bao X; Du F; Zhuang G; Qu Y Bioresour Technol; 2008 Jul; 99(11):5099-103. PubMed ID: 17976983 [TBL] [Abstract][Full Text] [Related]
6. Synergies in coupled hydrolysis and fermentation of cellulose using a Trichoderma reesei enzyme preparation and a recombinant Saccharomyces cerevisiae strain. Casa-Villegas M; Marín-Navarro J; Polaina J World J Microbiol Biotechnol; 2017 Jul; 33(7):140. PubMed ID: 28589508 [TBL] [Abstract][Full Text] [Related]
7. Fermentation of cellobiose to ethanol by industrial Saccharomyces strains carrying the β-glucosidase gene (BGL1) from Saccharomycopsis fibuligera. Gurgu L; Lafraya Á; Polaina J; Marín-Navarro J Bioresour Technol; 2011 Apr; 102(8):5229-36. PubMed ID: 21324680 [TBL] [Abstract][Full Text] [Related]
8. Co-fermentation of cellobiose and xylose using beta-glucosidase displaying diploid industrial yeast strain OC-2. Saitoh S; Hasunuma T; Tanaka T; Kondo A Appl Microbiol Biotechnol; 2010 Aug; 87(5):1975-82. PubMed ID: 20552354 [TBL] [Abstract][Full Text] [Related]
9. Molecular cloning and expression of fungal cellobiose transporters and β-glucosidases conferring efficient cellobiose fermentation in Saccharomyces cerevisiae. Bae YH; Kang KH; Jin YS; Seo JH J Biotechnol; 2014 Jan; 169():34-41. PubMed ID: 24184384 [TBL] [Abstract][Full Text] [Related]
10. Cellulosic alcoholic fermentation using recombinant Saccharomyces cerevisiae engineered for the production of Clostridium cellulovorans endoglucanase and Saccharomycopsis fibuligera beta-glucosidase. Jeon E; Hyeon Je; Eun LS; Park BS; Kim SW; Lee J; Han SO FEMS Microbiol Lett; 2009 Nov; 301(1):130-6. PubMed ID: 19843308 [TBL] [Abstract][Full Text] [Related]
11. Overcoming glucose repression in mixed sugar fermentation by co-expressing a cellobiose transporter and a β-glucosidase in Saccharomyces cerevisiae. Li S; Du J; Sun J; Galazka JM; Glass NL; Cate JH; Yang X; Zhao H Mol Biosyst; 2010 Nov; 6(11):2129-32. PubMed ID: 20871937 [TBL] [Abstract][Full Text] [Related]
12. Fungal β-glucosidase expression in Saccharomyces cerevisiae. Njokweni AP; Rose SH; van Zyl WH J Ind Microbiol Biotechnol; 2012 Oct; 39(10):1445-52. PubMed ID: 22707073 [TBL] [Abstract][Full Text] [Related]
13. Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae. Oh EJ; Skerker JM; Kim SR; Wei N; Turner TL; Maurer MJ; Arkin AP; Jin YS Appl Environ Microbiol; 2016 Jun; 82(12):3631-3639. PubMed ID: 27084006 [TBL] [Abstract][Full Text] [Related]
14. Expression of a codon-optimized β-glucosidase from Cellulomonas flavigena PR-22 in Saccharomyces cerevisiae for bioethanol production from cellobiose. Ríos-Fránquez FJ; González-Bautista E; Ponce-Noyola T; Ramos-Valdivia AC; Poggi-Varaldo HM; García-Mena J; Martinez A Arch Microbiol; 2017 May; 199(4):605-611. PubMed ID: 28138738 [TBL] [Abstract][Full Text] [Related]
16. High β-glucosidase secretion in Saccharomyces cerevisiae improves the efficiency of cellulase hydrolysis and ethanol production in simultaneous saccharification and fermentation. Tang H; Hou J; Shen Y; Xu L; Yang H; Fang X; Bao X J Microbiol Biotechnol; 2013 Nov; 23(11):1577-85. PubMed ID: 23928840 [TBL] [Abstract][Full Text] [Related]
17. Starch fermentation by recombinant saccharomyces cerevisiae strains expressing the alpha-amylase and glucoamylase genes from lipomyces kononenkoae and saccharomycopsis fibuligera. Eksteen JM; Van Rensburg P; Cordero Otero RR; Pretorius IS Biotechnol Bioeng; 2003 Dec; 84(6):639-46. PubMed ID: 14595776 [TBL] [Abstract][Full Text] [Related]
18. Nucleotide sequences of Saccharomycopsis fibuligera genes for extracellular beta-glucosidases as expressed in Saccharomyces cerevisiae. Machida M; Ohtsuki I; Fukui S; Yamashita I Appl Environ Microbiol; 1988 Dec; 54(12):3147-55. PubMed ID: 3146949 [TBL] [Abstract][Full Text] [Related]