These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 22112409)
1. Lactococcus lactis as a cell factory: a twofold increase in phosphofructokinase activity results in a proportional increase in specific rates of glucose uptake and lactate formation. Papagianni M; Avramidis N Enzyme Microb Technol; 2011 Jul; 49(2):197-202. PubMed ID: 22112409 [TBL] [Abstract][Full Text] [Related]
2. Engineering the central pathways in Lactococcus lactis: functional expression of the phosphofructokinase (pfk) and alternative oxidase (aox1) genes from Aspergillus niger in Lactococcus lactis facilitates improved carbon conversion rates under oxidizing conditions. Papagianni M; Avramidis N Enzyme Microb Technol; 2012 Aug; 51(3):125-30. PubMed ID: 22759530 [TBL] [Abstract][Full Text] [Related]
3. Glycolysis and the regulation of glucose transport in Lactococcus lactis spp. lactis in batch and fed-batch culture. Papagianni M; Avramidis N; Filiousis G Microb Cell Fact; 2007 May; 6():16. PubMed ID: 17521452 [TBL] [Abstract][Full Text] [Related]
4. Cloning and functional expression of the mitochondrial alternative oxidase gene (aox1) of Aspergillus niger in Lactococcus lactis and its induction by oxidizing conditions. Papagianni M; Avramidis N Enzyme Microb Technol; 2012 Jan; 50(1):17-21. PubMed ID: 22133435 [TBL] [Abstract][Full Text] [Related]
5. Twofold reduction of phosphofructokinase activity in Lactococcus lactis results in strong decreases in growth rate and in glycolytic flux. Andersen HW; Solem C; Hammer K; Jensen PR J Bacteriol; 2001 Jun; 183(11):3458-67. PubMed ID: 11344154 [TBL] [Abstract][Full Text] [Related]
6. Analysis of hemin effect on lactate reduction in Lactococcus lactis. Nagayasu M; Wardani AK; Nagahisa K; Shimizu H; Shioya S J Biosci Bioeng; 2007 Jun; 103(6):529-34. PubMed ID: 17630124 [TBL] [Abstract][Full Text] [Related]
7. The level of pyruvate-formate lyase controls the shift from homolactic to mixed-acid product formation in Lactococcus lactis. Melchiorsen CR; Jokumsen KV; Villadsen J; Israelsen H; Arnau J Appl Microbiol Biotechnol; 2002 Mar; 58(3):338-44. PubMed ID: 11935185 [TBL] [Abstract][Full Text] [Related]
8. Effects of glucose and nitrogen source concentration on batch fermentation kinetics of Lactococcus lactis under hemin-stimulated respirative condition. Razvi A; Zhang Z; Lan CQ Biotechnol Prog; 2008; 24(4):852-8. PubMed ID: 19194896 [TBL] [Abstract][Full Text] [Related]
9. Highly active, citrate inhibition resistant form of Aspergillus niger 6-phosphofructo-1-kinase encoded by a modified pfkA gene. Capuder M; Solar T; Bencina M; Legisa M J Biotechnol; 2009 Oct; 144(1):51-7. PubMed ID: 19379783 [TBL] [Abstract][Full Text] [Related]
10. Experimental determination of control of glycolysis in Lactococcus lactis. Koebmann BJ; Andersen HW; Solem C; Jensen PR Antonie Van Leeuwenhoek; 2002 Aug; 82(1-4):237-48. PubMed ID: 12369190 [TBL] [Abstract][Full Text] [Related]
11. [Effect of 6-phosphofructokinase gene-pfk overexpression on nisin production in Lactococcus lactis N8]. Zhu D; Zhao K; Xu H; Bai Y; Zhang X; Qiao M Wei Sheng Wu Xue Bao; 2015 Apr; 55(4):440-7. PubMed ID: 26211318 [TBL] [Abstract][Full Text] [Related]
12. The extent of co-metabolism of glucose and galactose by Lactococcus lactis changes with the expression of the lacSZ operon from Streptococcus thermophilus. Solem C; Koebmann B; Jensen PR Biotechnol Appl Biochem; 2008 May; 50(Pt 1):35-40. PubMed ID: 17822381 [TBL] [Abstract][Full Text] [Related]
13. Glyceraldehyde-3-phosphate dehydrogenase regulation in Lactococcus lactis ssp. cremoris MG1363 or relA mutant at low pH. Mercade M; Cocaign-Bousquet M; Loubière P J Appl Microbiol; 2006 Jun; 100(6):1364-72. PubMed ID: 16696685 [TBL] [Abstract][Full Text] [Related]
14. Two different pathways for D-xylose metabolism and the effect of xylose concentration on the yield coefficient of L-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO-1. Tanaka K; Komiyama A; Sonomoto K; Ishizaki A; Hall SJ; Stanbury PF Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):160-7. PubMed ID: 12382058 [TBL] [Abstract][Full Text] [Related]
15. Production of controlled molecular weight hyaluronic acid by glucostat strategy using recombinant Lactococcus lactis cultures. Jeeva P; Shanmuga Doss S; Sundaram V; Jayaraman G Appl Microbiol Biotechnol; 2019 Jun; 103(11):4363-4375. PubMed ID: 30968163 [TBL] [Abstract][Full Text] [Related]
16. Production of nisin with continuous adsorption to Amberlite XAD-4 resin using Lactococcus lactis N8 and L. lactis LAC48. Tolonen M; Saris PE; Siika-Aho M Appl Microbiol Biotechnol; 2004 Feb; 63(6):659-65. PubMed ID: 12910326 [TBL] [Abstract][Full Text] [Related]
17. Increased biomass yield of Lactococcus lactis during energetically limited growth and respiratory conditions. Koebmann B; Blank LM; Solem C; Petranovic D; Nielsen LK; Jensen PR Biotechnol Appl Biochem; 2008 May; 50(Pt 1):25-33. PubMed ID: 17824842 [TBL] [Abstract][Full Text] [Related]
18. Regulation of pyruvate metabolism in Lactococcus lactis depends on the imbalance between catabolism and anabolism. Garrigues C; Mercade M; Cocaign-Bousquet M; Lindley ND; Loubiere P Biotechnol Bioeng; 2001 Jul; 74(2):108-15. PubMed ID: 11369999 [TBL] [Abstract][Full Text] [Related]
19. Studies of gene expression and activity of hexokinase, phosphofructokinase and glycogen synthase in human skeletal muscle in states of altered insulin-stimulated glucose metabolism. Vestergaard H Dan Med Bull; 1999 Feb; 46(1):13-34. PubMed ID: 10081651 [TBL] [Abstract][Full Text] [Related]
20. Optimization of fed-batch production of the model recombinant protein GFP in Lactococcus lactis. Oddone GM; Lan CQ; Rawsthorne H; Mills DA; Block DE Biotechnol Bioeng; 2007 Apr; 96(6):1127-38. PubMed ID: 17117427 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]