These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 22112557)

  • 1. Production of α-ketoisocaproate via free-whole-cell biotransformation by Rhodococcus opacus DSM 43250 with L-leucine as the substrate.
    Zhu Y; Li J; Liu L; Du G; Chen J
    Enzyme Microb Technol; 2011 Sep; 49(4):321-5. PubMed ID: 22112557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-step biosynthesis of α-ketoisocaproate from L-leucine by an Escherichia coli whole-cell biocatalyst expressing an L-amino acid deaminase from Proteus vulgaris.
    Song Y; Li J; Shin HD; Du G; Liu L; Chen J
    Sci Rep; 2015 Jul; 5():12614. PubMed ID: 26217895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of myofibrillar proteolysis in chick skeletal muscles by alpha-ketoisocaproate.
    Nakashima K; Yakabe Y; Ishida A; Yamazaki M; Abe H
    Amino Acids; 2007 Sep; 33(3):499-503. PubMed ID: 16998714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alpha-ketoisocaproate is not a true substrate for ATP production by pancreatic beta-cell mitochondria.
    Lembert N; Idahl LA
    Diabetes; 1998 Mar; 47(3):339-44. PubMed ID: 9519737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-cell-density batch fermentation of Rhodococcus opacus PD630 using a high glucose concentration for triacylglycerol production.
    Kurosawa K; Boccazzi P; de Almeida NM; Sinskey AJ
    J Biotechnol; 2010 Jun; 147(3-4):212-8. PubMed ID: 20412824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel biotransformation process of 4'-demethylepipodophyllotoxin to 4'-demethylepipodophyllic acid by Bacillus fusiformis CICC 20463, Part II: process optimization.
    Tang YJ; Xu XL; Zhong JJ
    Bioprocess Biosyst Eng; 2010 Feb; 33(2):237-46. PubMed ID: 19396467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioconversion of ethyl (R)-4-cyano-3-hydroxybutyate into (R)-ethyl-3-hydroxyglutarate via an indirect pathway by Rhodococcus boritolerans.
    Yang MJ; Wang XJ; Yang ZY; An J; Xiang WS; Zhang J
    Biotechnol Lett; 2012 May; 34(5):901-5. PubMed ID: 22261862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of fasting on flux and interconversion of leucine and alpha-ketoisocaproate in vivo.
    Nissen S; Haymond MW
    Am J Physiol; 1981 Jul; 241(1):E72-5. PubMed ID: 7246770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Oxidative biotransformation of thioanisole by Rhodococcus rhodochrous IEGM 66 cells].
    El'kin AA; Grishko VV; Ivshina IB
    Prikl Biokhim Mikrobiol; 2010; 46(6):637-43. PubMed ID: 21261073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specificity of leucine effect on protein degradation in perfused rat heart.
    Chua BH
    J Mol Cell Cardiol; 1994 Jun; 26(6):743-51. PubMed ID: 8089854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leucine and alpha-ketoisocaproate metabolism and interconversions in fed and fasted sheep.
    Pell JM; Caldarone EM; Bergman EN
    Metabolism; 1986 Nov; 35(11):1005-16. PubMed ID: 3773720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defective suppression by insulin of leucine-carbon appearance and oxidation in type 1, insulin-dependent diabetes mellitus. Evidence for insulin resistance involving glucose and amino acid metabolism.
    Tessari P; Nosadini R; Trevisan R; De Kreutzenberg SV; Inchiostro S; Duner E; Biolo G; Marescotti MC; Tiengo A; Crepaldi G
    J Clin Invest; 1986 Jun; 77(6):1797-804. PubMed ID: 3519679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilization of water-in-oil emulsion by Rhodococcus opacus B-4 and its application to biotransformation.
    Honda K; Yamashita S; Nakagawa H; Sameshima Y; Omasa T; Kato J; Ohtake H
    Appl Microbiol Biotechnol; 2008 Apr; 78(5):767-73. PubMed ID: 18270698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of alpha-ketoisocaproate in rat cerebral cortical neurons.
    Mac M; Nehlig A; Nałecz MJ; Nałecz KA
    Arch Biochem Biophys; 2000 Apr; 376(2):347-53. PubMed ID: 10775422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of crucial reaction conditions for the production of nicotinamide by nitrile hydratase using response surface methodology.
    Kamble A; Banerjee UC
    Appl Biochem Biotechnol; 2008 Dec; 151(2-3):143-50. PubMed ID: 18975144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Splanchnic versus whole-body production of alpha-ketoisocaproate from leucine in the fed state.
    Biolo G; Tessari P
    Metabolism; 1997 Feb; 46(2):164-7. PubMed ID: 9030823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of glycerol for producing 1,3-dihydroxyacetone by Gluconobacter oxydans in an airlift bioreactor.
    Hu ZC; Zheng YG; Shen YC
    Bioresour Technol; 2011 Jul; 102(14):7177-82. PubMed ID: 21592784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of response surface optimization for the production of biosurfactant from Rhodococcus spp. MTCC 2574.
    Mutalik SR; Vaidya BK; Joshi RM; Desai KM; Nene SN
    Bioresour Technol; 2008 Nov; 99(16):7875-80. PubMed ID: 18511269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of reciprocal pool specific activities to model leucine metabolism in humans.
    Schwenk WF; Beaufrere B; Haymond MW
    Am J Physiol; 1985 Dec; 249(6 Pt 1):E646-50. PubMed ID: 4083346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation of leucine and alpha-ketoisocaproate to beta-hydroxy-beta-methylbutyrate in vivo.
    Van Koevering M; Nissen S
    Am J Physiol; 1992 Jan; 262(1 Pt 1):E27-31. PubMed ID: 1733247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.