These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 22112760)
1. A rapid-acting, long-acting insulin formulation based on a phospholipid complex loaded PHBHHx nanoparticles. Peng Q; Zhang ZR; Gong T; Chen GQ; Sun X Biomaterials; 2012 Feb; 33(5):1583-8. PubMed ID: 22112760 [TBL] [Abstract][Full Text] [Related]
2. Injectable and biodegradable thermosensitive hydrogels loaded with PHBHHx nanoparticles for the sustained and controlled release of insulin. Peng Q; Sun X; Gong T; Wu CY; Zhang T; Tan J; Zhang ZR Acta Biomater; 2013 Feb; 9(2):5063-9. PubMed ID: 23036950 [TBL] [Abstract][Full Text] [Related]
3. Mechanisms of phospholipid complex loaded nanoparticles enhancing the oral bioavailability. Peng Q; Zhang ZR; Sun X; Zuo J; Zhao D; Gong T Mol Pharm; 2010 Apr; 7(2):565-75. PubMed ID: 20166756 [TBL] [Abstract][Full Text] [Related]
4. The implantable and biodegradable PHBHHx 3D scaffolds loaded with protein-phospholipid complex for sustained delivery of proteins. Peng Q; Yang YJ; Zhang T; Wu CY; Yang Q; Sun X; Gong T; Zhang L; Zhang ZR Pharm Res; 2013 Apr; 30(4):1077-85. PubMed ID: 23224980 [TBL] [Abstract][Full Text] [Related]
5. Preparation and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHX) based nanoparticles for targeted cancer therapy. Kılıçay E; Demirbilek M; Türk M; Güven E; Hazer B; Denkbas EB Eur J Pharm Sci; 2011 Oct; 44(3):310-20. PubMed ID: 21884788 [TBL] [Abstract][Full Text] [Related]
6. Thymopentin nanoparticles engineered with high loading efficiency, improved pharmacokinetic properties, and enhanced immunostimulating effect using soybean phospholipid and PHBHHx polymer. Wu C; Zhang M; Zhang Z; Wan KW; Ahmed W; Phoenix DA; Elhissi AM; Sun X Mol Pharm; 2014 Oct; 11(10):3371-7. PubMed ID: 24641274 [TBL] [Abstract][Full Text] [Related]
7. Folate-mediated poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) nanoparticles for targeting drug delivery. Zhang C; Zhao L; Dong Y; Zhang X; Lin J; Chen Z Eur J Pharm Biopharm; 2010 Sep; 76(1):10-6. PubMed ID: 20472060 [TBL] [Abstract][Full Text] [Related]
8. Novel solid lipid nanoparticles as carriers for oral administration of insulin. Zhang Z; Lv H; Zhou J Pharmazie; 2009 Sep; 64(9):574-8. PubMed ID: 19827297 [TBL] [Abstract][Full Text] [Related]
9. Insulin-S.O (sodium oleate) complex-loaded PLGA nanoparticles: formulation, characterization and in vivo evaluation. Sun S; Liang N; Piao H; Yamamoto H; Kawashima Y; Cui F J Microencapsul; 2010; 27(6):471-8. PubMed ID: 20113168 [TBL] [Abstract][Full Text] [Related]
10. Controlled production of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) nanoparticles for targeted and sustained drug delivery. Heathman TR; Webb WR; Han J; Dan Z; Chen GQ; Forsyth NR; El Haj AJ; Zhang ZR; Sun X J Pharm Sci; 2014 Aug; 103(8):2498-508. PubMed ID: 24931627 [TBL] [Abstract][Full Text] [Related]
11. Preparation, characterization and in vivo evaluation of pH-sensitive oral insulin-loaded poly(lactic-co-glycolicacid) nanoparticles. Yang J; Sun H; Song C Diabetes Obes Metab; 2012 Apr; 14(4):358-64. PubMed ID: 22151795 [TBL] [Abstract][Full Text] [Related]
12. PLGA nanoparticles improve the oral bioavailability of curcumin in rats: characterizations and mechanisms. Xie X; Tao Q; Zou Y; Zhang F; Guo M; Wang Y; Wang H; Zhou Q; Yu S J Agric Food Chem; 2011 Sep; 59(17):9280-9. PubMed ID: 21797282 [TBL] [Abstract][Full Text] [Related]
13. Box-Behnken optimization design and enhanced oral bioavailability of thymopentin-loaded poly (butyl cyanoacrylate) nanoparticles. Jin X; Huang A; Ping Q; Cao F; Su Z Pharmazie; 2011 May; 66(5):339-47. PubMed ID: 21699067 [TBL] [Abstract][Full Text] [Related]
14. Influence of microencapsulation method and peptide loading on formulation of poly(lactide-co-glycolide) insulin nanoparticles. Kumar PS; Ramakrishna S; Saini TR; Diwan PV Pharmazie; 2006 Jul; 61(7):613-7. PubMed ID: 16889069 [TBL] [Abstract][Full Text] [Related]
15. Biodegradable nanoparticles loaded with insulin-phospholipid complex for oral delivery: preparation, in vitro characterization and in vivo evaluation. Cui F; Shi K; Zhang L; Tao A; Kawashima Y J Control Release; 2006 Aug; 114(2):242-50. PubMed ID: 16859800 [TBL] [Abstract][Full Text] [Related]
16. In vitro uptake evaluation in Caco-2 cells and in vivo results in diabetic rats of insulin-loaded PLGA nanoparticles. Reix N; Parat A; Seyfritz E; Van der Werf R; Epure V; Ebel N; Danicher L; Marchioni E; Jeandidier N; Pinget M; Frère Y; Sigrist S Int J Pharm; 2012 Nov; 437(1-2):213-20. PubMed ID: 22940208 [TBL] [Abstract][Full Text] [Related]
17. Investigation of drug loading and in vitro release mechanisms of insulin-lauryl sulfate complex loaded PLGA nanoparticles. Shi K; Cui F; Yamamoto H; Kawashima Y Pharmazie; 2008 Dec; 63(12):866-71. PubMed ID: 19177901 [TBL] [Abstract][Full Text] [Related]
18. Microencapsulated chitosan nanoparticles for pulmonary protein delivery: in vivo evaluation of insulin-loaded formulations. Al-Qadi S; Grenha A; Carrión-Recio D; Seijo B; Remuñán-López C J Control Release; 2012 Feb; 157(3):383-90. PubMed ID: 21864592 [TBL] [Abstract][Full Text] [Related]
19. Enteric-coated capsules filled with mono-disperse micro-particles containing PLGA-lipid-PEG nanoparticles for oral delivery of insulin. Yu F; Li Y; Liu CS; Chen Q; Wang GH; Guo W; Wu XE; Li DH; Wu WD; Chen XD Int J Pharm; 2015 Apr; 484(1-2):181-91. PubMed ID: 25724135 [TBL] [Abstract][Full Text] [Related]
20. Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery. Makhlof A; Tozuka Y; Takeuchi H Eur J Pharm Sci; 2011 Apr; 42(5):445-51. PubMed ID: 21182939 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]