BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 22112775)

  • 21. A multistep process is responsible for product-induced inactivation of glucose-fructose oxidoreductase from Zymomonas mobilis.
    Fürlinger M; Haltrich D; Kulbe KD; Nidetzky B
    Eur J Biochem; 1998 Feb; 251(3):955-63. PubMed ID: 9490072
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The substitution of a single amino acid residue (Ser-116 --> Asp) alters NADP-containing glucose-fructose oxidoreductase of Zymomonas mobilis into a glucose dehydrogenase with dual coenzyme specificity.
    Wiegert T; Sahm H; Sprenger GA
    J Biol Chem; 1997 May; 272(20):13126-33. PubMed ID: 9148926
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glucose-fructose oxidoreductase, a new enzyme isolated from Zymomonas mobilis that is responsible for sorbitol production.
    Zachariou M; Scopes RK
    J Bacteriol; 1986 Sep; 167(3):863-9. PubMed ID: 3745122
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crystal structure of a truncated mutant of glucose-fructose oxidoreductase shows that an N-terminal arm controls tetramer formation.
    Lott JS; Halbig D; Baker HM; Hardman MJ; Sprenger GA; Baker EN
    J Mol Biol; 2000 Dec; 304(4):575-84. PubMed ID: 11099381
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structures of the precursor form of glucose-fructose oxidoreductase from Zymomonas mobilis and its complexes with bound ligands.
    Nurizzo D; Halbig D; Sprenger GA; Baker EN
    Biochemistry; 2001 Nov; 40(46):13857-67. PubMed ID: 11705375
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The kinetics of glucose-fructose oxidoreductase from Zymomonas mobilis.
    Hardman MJ; Scopes RK
    Eur J Biochem; 1988 Apr; 173(1):203-9. PubMed ID: 3356190
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sorbitol can be produced not only chemically but also biotechnologically.
    Jonas R; Silveira MM
    Appl Biochem Biotechnol; 2004; 118(1-3):321-36. PubMed ID: 15304760
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Production of organic acids by periplasmic enzymes present in free and immobilized cells of Zymomonas mobilis.
    Malvessi E; Carra S; Pasquali FC; Kern DB; da Silveira MM; Ayub MA
    J Ind Microbiol Biotechnol; 2013 Jan; 40(1):1-10. PubMed ID: 23053345
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystallization and preliminary X-ray analysis of glucose-fructose oxidoreductase from Zymomonas mobilis.
    Loos H; Ermler U; Sprenger GA; Sahm H
    Protein Sci; 1994 Dec; 3(12):2447-9. PubMed ID: 7756998
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new biosensor for specific determination of sucrose using an oxidoreductase of Zymomonas mobilis and invertase.
    Park JK; Ro HS; Kim HS
    Biotechnol Bioeng; 1991 Jul; 38(3):217-23. PubMed ID: 18600754
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Purification of food-grade oligosaccharides using immobilised cells of Zymomonas mobilis.
    Crittenden RG; Playne MJ
    Appl Microbiol Biotechnol; 2002 Mar; 58(3):297-302. PubMed ID: 11935179
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Production of glucose-fructose oxidoreductase and ethanol by Zymomonas mobilis ATCC 29191 in medium containing corn steep liquor as a source of vitamins.
    Silveira MM; Wisbeck E; Hoch I; Jonas R
    Appl Microbiol Biotechnol; 2001 May; 55(4):442-5. PubMed ID: 11398924
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The efficient export of NADP-containing glucose-fructose oxidoreductase to the periplasm of Zymomonas mobilis depends both on an intact twin-arginine motif in the signal peptide and on the generation of a structural export signal induced by cofactor binding.
    Halbig D; Wiegert T; Blaudeck N; Freudl R; Sprenger GA
    Eur J Biochem; 1999 Jul; 263(2):543-51. PubMed ID: 10406965
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis of the alternative sweetener 5-ketofructose from sucrose by fructose dehydrogenase and invertase producing Gluconobacter strains.
    Hoffmann JJ; Hövels M; Kosciow K; Deppenmeier U
    J Biotechnol; 2020 Jan; 307():164-174. PubMed ID: 31704125
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Zymomonas mobilis CP4 fed-batch fermentations of glucose-fructose mixtures to ethanol and sorbitol.
    Shene C; Bravo S
    Appl Microbiol Biotechnol; 2001 Oct; 57(3):323-8. PubMed ID: 11759679
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Continuous production of gluconic acid and sorbitol from Jerusalem artichoke and glucose using an oxidoreductase of Zymomonas mobilis and inulinase.
    Kim DM; Kim HS
    Biotechnol Bioeng; 1992 Feb; 39(3):336-42. PubMed ID: 18600950
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Revitalizing the ethanologenic bacterium
    Hu M; Chen X; Huang J; Du J; Li M; Yang S
    Bioresour Bioprocess; 2021; 8(1):119. PubMed ID: 34873566
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Catalytic activity of zymomonas mobilis extracellular "levan-levansucrase" complex in sucrose medium.
    Bekers M; Upite D; Kaminska E; Laukevics J; Ionina R; Vigants A
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):321-4. PubMed ID: 15296187
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Production of lactosucrose from sucrose and lactose by a levansucrase from Zymomonas mobilis.
    Han WC; Byun SH; Kim MH; Sohn EH; Lim JD; Um BH; Kim CH; Kang SA; Jang KH
    J Microbiol Biotechnol; 2009 Oct; 19(10):1153-60. PubMed ID: 19884774
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simultaneous saccharification of inulin and starch using commercial glucoamylase and the subsequent bioconversion to high titer sorbitol and gluconic acid.
    An K; Hu F; Bao J
    Appl Biochem Biotechnol; 2013 Dec; 171(8):2093-104. PubMed ID: 24026410
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.