These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 22112835)

  • 1. Phosphate-bound structure of an organophosphate-degrading enzyme from Agrobacterium radiobacter.
    Ely F; Pedroso MM; Gahan LR; Ollis DL; Guddat LW; Schenk G
    J Inorg Biochem; 2012 Jan; 106(1):19-22. PubMed ID: 22112835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The organophosphate-degrading enzyme from Agrobacterium radiobacter displays mechanistic flexibility for catalysis.
    Ely F; Hadler KS; Gahan LR; Guddat LW; Ollis DL; Schenk G
    Biochem J; 2010 Dec; 432(3):565-73. PubMed ID: 20868365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In crystallo capture of a Michaelis complex and product-binding modes of a bacterial phosphotriesterase.
    Jackson CJ; Foo JL; Kim HK; Carr PD; Liu JW; Salem G; Ollis DL
    J Mol Biol; 2008 Feb; 375(5):1189-96. PubMed ID: 18082180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structure of an enzyme-product complex reveals the critical role of a terminal hydroxide nucleophile in the bacterial phosphotriesterase mechanism.
    Jackson C; Kim HK; Carr PD; Liu JW; Ollis DL
    Biochim Biophys Acta; 2005 Aug; 1752(1):56-64. PubMed ID: 16054447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The bioremediator glycerophosphodiesterase employs a non-processive mechanism for hydrolysis.
    Hadler KS; Gahan LR; Ollis DL; Schenk G
    J Inorg Biochem; 2010 Feb; 104(2):211-3. PubMed ID: 19923005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binuclear metallohydrolases: complex mechanistic strategies for a simple chemical reaction.
    Schenk G; Mitić N; Gahan LR; Ollis DL; McGeary RP; Guddat LW
    Acc Chem Res; 2012 Sep; 45(9):1593-603. PubMed ID: 22698580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of the binuclear metal center through formation of phosphotriesterase-inhibitor complexes.
    Samples CR; Raushel FM; DeRose VJ
    Biochemistry; 2007 Mar; 46(11):3435-42. PubMed ID: 17315951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of diethyl phosphate bound to the binuclear metal center of phosphotriesterase.
    Kim J; Tsai PC; Chen SL; Himo F; Almo SC; Raushel FM
    Biochemistry; 2008 Sep; 47(36):9497-504. PubMed ID: 18702530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutation of outer-shell residues modulates metal ion co-ordination strength in a metalloenzyme.
    Foo JL; Jackson CJ; Carr PD; Kim HK; Schenk G; Gahan LR; Ollis DL
    Biochem J; 2010 Jul; 429(2):313-21. PubMed ID: 20459397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protonation of the binuclear metal center within the active site of phosphotriesterase.
    Samples CR; Howard T; Raushel FM; DeRose VJ
    Biochemistry; 2005 Aug; 44(33):11005-13. PubMed ID: 16101284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative investigation of the reaction mechanisms of the organophosphate-degrading phosphotriesterases from Agrobacterium radiobacter (OpdA) and Pseudomonas diminuta (OPH).
    Pedroso MM; Ely F; Mitić N; Carpenter MC; Gahan LR; Wilcox DE; Larrabee JL; Ollis DL; Schenk G
    J Biol Inorg Chem; 2014 Dec; 19(8):1263-75. PubMed ID: 25104333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High resolution crystal structure of a fluoride-inhibited organophosphate-degrading metallohydrolase.
    Selleck C; Guddat LW; Ollis DL; Schenk G; Pedroso MM
    J Inorg Biochem; 2017 Dec; 177():287-290. PubMed ID: 28673485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of recombinant Haemophilus influenzae e (P4) acid phosphatase reveals a new member of the haloacid dehalogenase superfamily.
    Felts RL; Ou Z; Reilly TJ; Tanner JJ
    Biochemistry; 2007 Oct; 46(39):11110-9. PubMed ID: 17824671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic and geometric structures of the organophosphate-degrading enzyme from Agrobacterium radiobacter (OpdA).
    Ely F; Hadler KS; Mitić N; Gahan LR; Ollis DL; Plugis NM; Russo MT; Larrabee JA; Schenk G
    J Biol Inorg Chem; 2011 Jun; 16(5):777-87. PubMed ID: 21487938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical study of the phosphotriesterase reaction mechanism.
    Chen SL; Fang WH; Himo F
    J Phys Chem B; 2007 Feb; 111(6):1253-5. PubMed ID: 17253743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-based and random mutagenesis approaches increase the organophosphate-degrading activity of a phosphotriesterase homologue from Deinococcus radiodurans.
    Hawwa R; Larsen SD; Ratia K; Mesecar AD
    J Mol Biol; 2009 Oct; 393(1):36-57. PubMed ID: 19631223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and mechanism of alkaline phosphatase.
    Coleman JE
    Annu Rev Biophys Biomol Struct; 1992; 21():441-83. PubMed ID: 1525473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trimethylphosphate and Dimethylphosphate Hydrolysis by Binuclear Cd
    Pinto G; Mazzone G; Russo N; Toscano M
    Chemistry; 2017 Oct; 23(55):13742-13753. PubMed ID: 28661038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of a unique halide-stabilizing residue on the catalytic properties of haloalkane dehalogenase DatA from Agrobacterium tumefaciens C58.
    Hasan K; Gora A; Brezovsky J; Chaloupkova R; Moskalikova H; Fortova A; Nagata Y; Damborsky J; Prokop Z
    FEBS J; 2013 Jul; 280(13):3149-59. PubMed ID: 23490078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of substrate orientation on the mechanism of a phosphotriesterase.
    Jackson CJ; Liu JW; Coote ML; Ollis DL
    Org Biomol Chem; 2005 Dec; 3(24):4343-50. PubMed ID: 16327895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.