BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 22112844)

  • 1. Probing the metal ion selectivity in methionine aminopeptidase via changes in the luminescence properties of the enzyme bound europium ion.
    Sule N; Singh RK; Zhao P; Srivastava DK
    J Inorg Biochem; 2012 Jan; 106(1):84-9. PubMed ID: 22112844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analyzing the catalytic role of Asp97 in the methionine aminopeptidase from Escherichia coli.
    Mitra S; Job KM; Meng L; Bennett B; Holz RC
    FEBS J; 2008 Dec; 275(24):6248-59. PubMed ID: 19019076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic and spectroscopic analysis of the catalytic role of H79 in the methionine aminopeptidase from Escherichia coli.
    Watterson SJ; Mitra S; Swierczek SI; Bennett B; Holz RC
    Biochemistry; 2008 Nov; 47(45):11885-93. PubMed ID: 18855426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the stoichiometric metal activation of methionine aminopeptidase.
    Chai SC; Ye QZ
    BMC Biochem; 2009 Dec; 10():32. PubMed ID: 20017927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic and spectroscopic characterization of the H178A methionyl aminopeptidase from Escherichia coli.
    Copik AJ; Swierczek SI; Lowther WT; D'souza VM; Matthews BW; Holz RC
    Biochemistry; 2003 May; 42(20):6283-92. PubMed ID: 12755633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FE(II) is the native cofactor for Escherichia coli methionine aminopeptidase.
    Chai SC; Wang WL; Ye QZ
    J Biol Chem; 2008 Oct; 283(40):26879-85. PubMed ID: 18669631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression and divalent metal binding properties of the methionyl aminopeptidase from Pyrococcus furiosus.
    Meng L; Ruebush S; D'souza VM; Copik AJ; Tsunasawa S; Holz RC
    Biochemistry; 2002 Jun; 41(23):7199-208. PubMed ID: 12044150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the metal binding site in methionine aminopeptidase by density functional theory.
    Jørgensen AT; Norrby PO; Liljefors T
    J Comput Aided Mol Des; 2002 Mar; 16(3):167-79. PubMed ID: 12363216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutation of H63 and its catalytic affect on the methionine aminopeptidase from Escherichia coli.
    Mitra S; Bennett B; Holz RC
    Biochim Biophys Acta; 2009 Jan; 1794(1):137-43. PubMed ID: 18952013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural evidence that the methionyl aminopeptidase from Escherichia coli is a mononuclear metalloprotease.
    Cosper NJ; D'souza VM; Scott RA; Holz RC
    Biochemistry; 2001 Nov; 40(44):13302-9. PubMed ID: 11683640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino acid residues involved in the functional integrity of Escherichia coli methionine aminopeptidase.
    Chiu CH; Lee CZ; Lin KS; Tam MF; Lin LY
    J Bacteriol; 1999 Aug; 181(15):4686-9. PubMed ID: 10419973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The methionyl aminopeptidase from Escherichia coli can function as an iron(II) enzyme.
    D'souza VM; Holz RC
    Biochemistry; 1999 Aug; 38(34):11079-85. PubMed ID: 10460163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyzing the binding of Co(II)-specific inhibitors to the methionyl aminopeptidases from Escherichia coli and Pyrococcus furiosus.
    Mitra S; Sheppard G; Wang J; Bennett B; Holz RC
    J Biol Inorg Chem; 2009 May; 14(4):573-85. PubMed ID: 19198897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the active site and insight into the binding mode of the anti-angiogenesis agent fumagillin to the manganese(II)-loaded methionyl aminopeptidase from Escherichia coli.
    D'souza VM; Brown RS; Bennett B; Holz RC
    J Biol Inorg Chem; 2005 Jan; 10(1):41-50. PubMed ID: 15578241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Divalent metal binding properties of the methionyl aminopeptidase from Escherichia coli.
    D'souza VM; Bennett B; Copik AJ; Holz RC
    Biochemistry; 2000 Apr; 39(13):3817-26. PubMed ID: 10736182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic circular dichroism and cobalt(II) binding equilibrium studies of Escherichia coli methionyl aminopeptidase.
    Larrabee JA; Leung CH; Moore RL; Thamrong-nawasawat T; Wessler BS
    J Am Chem Soc; 2004 Oct; 126(39):12316-24. PubMed ID: 15453765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bridging of a substrate between cyclodextrin and an enzyme's active site pocket triggers a unique mode of inhibition.
    Sule NV; Ugrinov A; Mallik S; Srivastava DK
    Biochim Biophys Acta; 2015 Jan; 1850(1):141-9. PubMed ID: 25450177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of monometalated methionine aminopeptidase: inhibitor discovery and crystallographic analysis.
    Huang M; Xie SX; Ma ZQ; Huang QQ; Nan FJ; Ye QZ
    J Med Chem; 2007 Nov; 50(23):5735-42. PubMed ID: 17948983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of two new aminopeptidases in Escherichia coli.
    Zheng Y; Roberts RJ; Kasif S; Guan C
    J Bacteriol; 2005 Jun; 187(11):3671-7. PubMed ID: 15901689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EPR and X-ray crystallographic characterization of the product-bound form of the MnII-loaded methionyl aminopeptidase from Pyrococcus furiosus.
    Copik AJ; Nocek BP; Swierczek SI; Ruebush S; Jang SB; Meng L; D'souza VM; Peters JW; Bennett B; Holz RC
    Biochemistry; 2005 Jan; 44(1):121-9. PubMed ID: 15628852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.