BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 22112953)

  • 1. Ethanol production from sugar beet molasses by S. cerevisiae entrapped in an alginate-maize stem ground tissue matrix.
    Razmovski R; Vučurović V
    Enzyme Microb Technol; 2011 Apr; 48(4-5):378-85. PubMed ID: 22112953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaling up of ethanol production from sugar molasses using yeast immobilized with alginate-based MCM-41 mesoporous zeolite composite carrier.
    Zheng C; Sun X; Li L; Guan N
    Bioresour Technol; 2012 Jul; 115():208-14. PubMed ID: 22154581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of fructose and ethanol from sugar beet molasses using Saccharomyces cerevisiae ATCC 36858.
    Atiyeh H; Duvnjak Z
    Biotechnol Prog; 2002; 18(2):234-9. PubMed ID: 11934290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Process optimization for continuous ethanol fermentation by alginate-immobilized cells of Saccharomyces cerevisiae HAU-1.
    Yadav BS; Rani U; Dhamija SS; Nigam P; Singh D
    J Basic Microbiol; 1996; 36(3):205-10. PubMed ID: 8676283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of ethanol production from carob pod extract using immobilized Saccharomyces cerevisiae cells in a stirred tank bioreactor.
    Ercan Y; Irfan T; Mustafa K
    Bioresour Technol; 2013 May; 135():365-71. PubMed ID: 23010212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethanol production from concentrated food waste hydrolysates with yeast cells immobilized on corn stalk.
    Yan S; Chen X; Wu J; Wang P
    Appl Microbiol Biotechnol; 2012 May; 94(3):829-38. PubMed ID: 22395912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous ethanol production from sugarcane molasses using a column reactor of immobilized Saccharomyces cerevisiae HAU-1.
    Sheoran A; Yadav BS; Nigam P; Singh D
    J Basic Microbiol; 1998; 38(2):123-8. PubMed ID: 9637012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of process variables for minimization of byproduct formation during fermentation of blackstrap molasses to ethanol at industrial scale.
    Arshad M; Khan ZM; Khalil-ur-Rehman ; Shah FA; Rajoka MI
    Lett Appl Microbiol; 2008 Nov; 47(5):410-4. PubMed ID: 19146530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced production of bioethanol and ultrastructural characteristics of reused Saccharomyces cerevisiae immobilized calcium alginate beads.
    Lee KH; Choi IS; Kim YG; Yang DJ; Bae HJ
    Bioresour Technol; 2011 Sep; 102(17):8191-8. PubMed ID: 21742486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae.
    Najafpour G; Younesi H; Syahidah Ku Ismail K
    Bioresour Technol; 2004 May; 92(3):251-60. PubMed ID: 14766158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ergosterol production from molasses by genetically modified Saccharomyces cerevisiae.
    He X; Guo X; Liu N; Zhang B
    Appl Microbiol Biotechnol; 2007 May; 75(1):55-60. PubMed ID: 17225097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic analysis of calcium alginate-immobilized Saccharomyces cerevisiae under high-gravity fermentation conditions.
    Pham TK; Wright PC
    J Proteome Res; 2008 Feb; 7(2):515-25. PubMed ID: 18171021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning structural durability of yeast-encapsulating alginate gel beads with interpenetrating networks for sustained bioethanol production.
    Cha C; Kim SR; Jin YS; Kong H
    Biotechnol Bioeng; 2012 Jan; 109(1):63-73. PubMed ID: 21732329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of bioethanol productivity of immobilized Saccharomyces bayanus with using sodium alginate-graft-poly(N-vinyl-2-pyrrolidone) matrix.
    İnal M; Yiğitoğlu M
    Appl Biochem Biotechnol; 2012 Sep; 168(2):266-78. PubMed ID: 22717770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detrimental effect of increasing sugar concentrations on ethanol production from maize or decorticated sorghum mashes fermented with Saccharomyces cerevisiae or Zymomonas mobilis: biofuels and environmental biotechnology.
    Pérez-Carrillo E; Luisa Cortés-Callejas M; Sabillón-Galeas LE; Montalvo-Villarreal JL; Canizo JR; Georgina Moreno-Zepeda M; Serna-Saldivar SO
    Biotechnol Lett; 2011 Feb; 33(2):301-7. PubMed ID: 20972698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Agar immobilized yeast cells in tubular reactor for ethanol production.
    Nigam JN; Gogoi BK; Bezbaruah RL
    Indian J Exp Biol; 1998 Aug; 36(8):816-9. PubMed ID: 9838885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of ethanol by alginate-entrapped Saccharomyces cerevisiae strain "14-12".
    Youssef KA; Ghareib M; Khalil AA
    Indian J Exp Biol; 1989 Feb; 27(2):121-3. PubMed ID: 2680928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-temperature ethanol fermentation by immobilized coculture of Kluyveromyces marxianus and Saccharomyces cerevisiae.
    Eiadpum A; Limtong S; Phisalaphong M
    J Biosci Bioeng; 2012 Sep; 114(3):325-9. PubMed ID: 22608995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethanol fermentation in a magnetically fluidized bed reactor with immobilized Saccharomyces cerevisiae in magnetic particles.
    Liu CZ; Wang F; Ou-Yang F
    Bioresour Technol; 2009 Jan; 100(2):878-82. PubMed ID: 18760598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alcohol production from starch by mixed cultures of Aspergillus awamori and immobilized Saccharomyces cerevisiae at different agitation speeds.
    Farid MA; El-Enshasy HA; Noor El-Deen AM
    J Basic Microbiol; 2002; 42(3):162-71. PubMed ID: 12111743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.