These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 22113084)

  • 1. FTSite: high accuracy detection of ligand binding sites on unbound protein structures.
    Ngan CH; Hall DR; Zerbe B; Grove LE; Kozakov D; Vajda S
    Bioinformatics; 2012 Jan; 28(2):286-7. PubMed ID: 22113084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FTFlex: accounting for binding site flexibility to improve fragment-based identification of druggable hot spots.
    Grove LE; Hall DR; Beglov D; Vajda S; Kozakov D
    Bioinformatics; 2013 May; 29(9):1218-9. PubMed ID: 23476022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. bSiteFinder, an improved protein-binding sites prediction server based on structural alignment: more accurate and less time-consuming.
    Gao J; Zhang Q; Liu M; Zhu L; Wu D; Cao Z; Zhu R
    J Cheminform; 2016; 8():38. PubMed ID: 27403208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins.
    Kozakov D; Grove LE; Hall DR; Bohnuud T; Mottarella SE; Luo L; Xia B; Beglov D; Vajda S
    Nat Protoc; 2015 May; 10(5):733-55. PubMed ID: 25855957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SDOCKER: a method utilizing existing X-ray structures to improve docking accuracy.
    Wu G; Vieth M
    J Med Chem; 2004 Jun; 47(12):3142-8. PubMed ID: 15163194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development, validation, and applications of anisotropic polarizable molecular mechanics to study ligand and drug-receptor interactions.
    Gresh N
    Curr Pharm Des; 2006; 12(17):2121-58. PubMed ID: 16796560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of cavities on protein surface using multiple computational approaches for drug binding site prediction.
    Zhang Z; Li Y; Lin B; Schroeder M; Huang B
    Bioinformatics; 2011 Aug; 27(15):2083-8. PubMed ID: 21636590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphate binding sites prediction in phosphorylation-dependent protein-protein interactions.
    Lu ZC; Jiang F; Wu YD
    Bioinformatics; 2021 Dec; 37(24):4712-4718. PubMed ID: 34270697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient molecular docking of NMR structures: application to HIV-1 protease.
    Huang SY; Zou X
    Protein Sci; 2007 Jan; 16(1):43-51. PubMed ID: 17123961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing template-free predictor for targeting protein-ligand binding sites with classifier ensemble and spatial clustering.
    Yu DJ; Hu J; Yang J; Shen HB; Tang J; Yang JY
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(4):994-1008. PubMed ID: 24334392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation.
    Huang B; Schroeder M
    BMC Struct Biol; 2006 Sep; 6():19. PubMed ID: 16995956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites.
    Laurie AT; Jackson RM
    Bioinformatics; 2005 May; 21(9):1908-16. PubMed ID: 15701681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary programming.
    Gehlhaar DK; Verkhivker GM; Rejto PA; Sherman CJ; Fogel DB; Fogel LJ; Freer ST
    Chem Biol; 1995 May; 2(5):317-24. PubMed ID: 9383433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MEDock: a web server for efficient prediction of ligand binding sites based on a novel optimization algorithm.
    Chang DT; Oyang YJ; Lin JH
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W233-8. PubMed ID: 15991337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lessons in molecular recognition: the effects of ligand and protein flexibility on molecular docking accuracy.
    Erickson JA; Jalaie M; Robertson DH; Lewis RA; Vieth M
    J Med Chem; 2004 Jan; 47(1):45-55. PubMed ID: 14695819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mimicry of substrate oxygen atoms by water molecules in the beta-amylase active site.
    Pujadas G; Palau J
    Protein Sci; 2001 Aug; 10(8):1645-57. PubMed ID: 11468361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methods for the prediction of protein-ligand binding sites for structure-based drug design and virtual ligand screening.
    Laurie AT; Jackson RM
    Curr Protein Pept Sci; 2006 Oct; 7(5):395-406. PubMed ID: 17073692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PESDserv: a server for high-throughput comparison of protein binding site surfaces.
    Das S; Krein MP; Breneman CM
    Bioinformatics; 2010 Aug; 26(15):1913-4. PubMed ID: 20538727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand-binding site prediction of proteins based on known fragment-fragment interactions.
    Kasahara K; Kinoshita K; Takagi T
    Bioinformatics; 2010 Jun; 26(12):1493-9. PubMed ID: 20472546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo ligand design to an ensemble of protein structures.
    Todorov NP; Buenemann CL; Alberts IL
    Proteins; 2006 Jul; 64(1):43-59. PubMed ID: 16555306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.