BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 22113284)

  • 1. Chromatin endogenous cleavage and psoralen crosslinking assays to analyze rRNA gene chromatin in vivo.
    Griesenbeck J; Wittner M; Charton R; Conconi A
    Methods Mol Biol; 2012; 809():291-301. PubMed ID: 22113284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid changes in transcription and chromatin structure of ribosomal genes in yeast during growth phase transitions.
    Fahy D; Conconi A; Smerdon MJ
    Exp Cell Res; 2005 May; 305(2):365-73. PubMed ID: 15817161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Actively transcribed rRNA genes in S. cerevisiae are organized in a specialized chromatin associated with the high-mobility group protein Hmo1 and are largely devoid of histone molecules.
    Merz K; Hondele M; Goetze H; Gmelch K; Stoeckl U; Griesenbeck J
    Genes Dev; 2008 May; 22(9):1190-204. PubMed ID: 18451108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishment and maintenance of alternative chromatin states at a multicopy gene locus.
    Wittner M; Hamperl S; Stöckl U; Seufert W; Tschochner H; Milkereit P; Griesenbeck J
    Cell; 2011 May; 145(4):543-54. PubMed ID: 21565613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In yeast cells arrested at the early S-phase by hydroxyurea, rRNA gene promoters and chromatin are poised for transcription while rRNA synthesis is compromised.
    Charton R; Muguet A; Griesenbeck J; Smerdon MJ; Conconi A
    Mutat Res; 2019 May; 815():20-29. PubMed ID: 31063901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatin structures and transcription of rDNA in yeast Saccharomyces cerevisiae.
    Dammann R; Lucchini R; Koller T; Sogo JM
    Nucleic Acids Res; 1993 May; 21(10):2331-8. PubMed ID: 8506130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The yeast rDNA locus: a model system to study DNA repair in chromatin.
    Conconi A
    DNA Repair (Amst); 2005 Jul; 4(8):897-908. PubMed ID: 15996904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin structure of the yeast FBP1 gene: transcription-dependent changes in the regulatory and coding regions.
    del Olmo ML; Sogo JM; Franco L; Pérez-Ortín JE
    Yeast; 1993 Nov; 9(11):1229-40. PubMed ID: 8109172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishment and Maintenance of Open Ribosomal RNA Gene Chromatin States in Eukaryotes.
    Schächner C; Merkl PE; Pilsl M; Schwank K; Hergert K; Kruse S; Milkereit P; Tschochner H; Griesenbeck J
    Methods Mol Biol; 2022; 2533():25-38. PubMed ID: 35796980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A gene-specific requirement for FACT during transcription is related to the chromatin organization of the transcribed region.
    Jimeno-González S; Gómez-Herreros F; Alepuz PM; Chávez S
    Mol Cell Biol; 2006 Dec; 26(23):8710-21. PubMed ID: 17000768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA protein interactions at the rRNA of Saccharomyces cerevisiae.
    Cioci F; Di Felice F; Chiani F; Camilloni G
    Ital J Biochem; 2007 Jun; 56(2):81-90. PubMed ID: 17722648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleosome structure and positioning modulate nucleotide excision repair in the non-transcribed strand of an active gene.
    Wellinger RE; Thoma F
    EMBO J; 1997 Aug; 16(16):5046-56. PubMed ID: 9305646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The chromo domain protein chd1p from budding yeast is an ATP-dependent chromatin-modifying factor.
    Tran HG; Steger DJ; Iyer VR; Johnson AD
    EMBO J; 2000 May; 19(10):2323-31. PubMed ID: 10811623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Replication of transcriptionally active chromatin.
    Lucchini R; Sogo JM
    Nature; 1995 Mar; 374(6519):276-80. PubMed ID: 7885449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative genetic analysis in Saccharomyces cerevisiae using epistatic miniarray profiles (E-MAPs) and its application to chromatin functions.
    Schuldiner M; Collins SR; Weissman JS; Krogan NJ
    Methods; 2006 Dec; 40(4):344-52. PubMed ID: 17101447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Common chromatin architecture, common chromatin remodeling, and common transcription kinetics of Adr1-dependent genes in Saccharomyces cerevisiae.
    Agricola E; Verdone L; Xella B; Di Mauro E; Caserta M
    Biochemistry; 2004 Jul; 43(27):8878-84. PubMed ID: 15236596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualization of the dynamic behavior of ribosomal RNA gene repeats in living yeast cells.
    Miyazaki T; Kobayashi T
    Genes Cells; 2011 May; 16(5):491-502. PubMed ID: 21518153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron microscope visualization of RNA transcription and processing in Saccharomyces cerevisiae by Miller chromatin spreading.
    Osheim YN; French SL; Sikes ML; Beyer AL
    Methods Mol Biol; 2009; 464():55-69. PubMed ID: 18951179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remodeling of yeast CUP1 chromatin involves activator-dependent repositioning of nucleosomes over the entire gene and flanking sequences.
    Shen CH; Leblanc BP; Alfieri JA; Clark DJ
    Mol Cell Biol; 2001 Jan; 21(2):534-47. PubMed ID: 11134341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational analysis of promoter elements and chromatin features in yeast.
    Wyrick JJ
    Methods Mol Biol; 2012; 809():217-35. PubMed ID: 22113279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.