These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

47 related articles for article (PubMed ID: 22113284)

  • 1. Chromatin endogenous cleavage and psoralen crosslinking assays to analyze rRNA gene chromatin in vivo.
    Griesenbeck J; Wittner M; Charton R; Conconi A
    Methods Mol Biol; 2012; 809():291-301. PubMed ID: 22113284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid changes in transcription and chromatin structure of ribosomal genes in yeast during growth phase transitions.
    Fahy D; Conconi A; Smerdon MJ
    Exp Cell Res; 2005 May; 305(2):365-73. PubMed ID: 15817161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Actively transcribed rRNA genes in S. cerevisiae are organized in a specialized chromatin associated with the high-mobility group protein Hmo1 and are largely devoid of histone molecules.
    Merz K; Hondele M; Goetze H; Gmelch K; Stoeckl U; Griesenbeck J
    Genes Dev; 2008 May; 22(9):1190-204. PubMed ID: 18451108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishment and maintenance of alternative chromatin states at a multicopy gene locus.
    Wittner M; Hamperl S; Stöckl U; Seufert W; Tschochner H; Milkereit P; Griesenbeck J
    Cell; 2011 May; 145(4):543-54. PubMed ID: 21565613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In yeast cells arrested at the early S-phase by hydroxyurea, rRNA gene promoters and chromatin are poised for transcription while rRNA synthesis is compromised.
    Charton R; Muguet A; Griesenbeck J; Smerdon MJ; Conconi A
    Mutat Res; 2019 May; 815():20-29. PubMed ID: 31063901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatin structures and transcription of rDNA in yeast Saccharomyces cerevisiae.
    Dammann R; Lucchini R; Koller T; Sogo JM
    Nucleic Acids Res; 1993 May; 21(10):2331-8. PubMed ID: 8506130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The yeast rDNA locus: a model system to study DNA repair in chromatin.
    Conconi A
    DNA Repair (Amst); 2005 Jul; 4(8):897-908. PubMed ID: 15996904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin structure of the yeast FBP1 gene: transcription-dependent changes in the regulatory and coding regions.
    del Olmo ML; Sogo JM; Franco L; Pérez-Ortín JE
    Yeast; 1993 Nov; 9(11):1229-40. PubMed ID: 8109172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishment and Maintenance of Open Ribosomal RNA Gene Chromatin States in Eukaryotes.
    Schächner C; Merkl PE; Pilsl M; Schwank K; Hergert K; Kruse S; Milkereit P; Tschochner H; Griesenbeck J
    Methods Mol Biol; 2022; 2533():25-38. PubMed ID: 35796980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A gene-specific requirement for FACT during transcription is related to the chromatin organization of the transcribed region.
    Jimeno-González S; Gómez-Herreros F; Alepuz PM; Chávez S
    Mol Cell Biol; 2006 Dec; 26(23):8710-21. PubMed ID: 17000768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA protein interactions at the rRNA of Saccharomyces cerevisiae.
    Cioci F; Di Felice F; Chiani F; Camilloni G
    Ital J Biochem; 2007 Jun; 56(2):81-90. PubMed ID: 17722648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleosome structure and positioning modulate nucleotide excision repair in the non-transcribed strand of an active gene.
    Wellinger RE; Thoma F
    EMBO J; 1997 Aug; 16(16):5046-56. PubMed ID: 9305646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The chromo domain protein chd1p from budding yeast is an ATP-dependent chromatin-modifying factor.
    Tran HG; Steger DJ; Iyer VR; Johnson AD
    EMBO J; 2000 May; 19(10):2323-31. PubMed ID: 10811623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Replication of transcriptionally active chromatin.
    Lucchini R; Sogo JM
    Nature; 1995 Mar; 374(6519):276-80. PubMed ID: 7885449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative genetic analysis in Saccharomyces cerevisiae using epistatic miniarray profiles (E-MAPs) and its application to chromatin functions.
    Schuldiner M; Collins SR; Weissman JS; Krogan NJ
    Methods; 2006 Dec; 40(4):344-52. PubMed ID: 17101447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Common chromatin architecture, common chromatin remodeling, and common transcription kinetics of Adr1-dependent genes in Saccharomyces cerevisiae.
    Agricola E; Verdone L; Xella B; Di Mauro E; Caserta M
    Biochemistry; 2004 Jul; 43(27):8878-84. PubMed ID: 15236596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualization of the dynamic behavior of ribosomal RNA gene repeats in living yeast cells.
    Miyazaki T; Kobayashi T
    Genes Cells; 2011 May; 16(5):491-502. PubMed ID: 21518153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron microscope visualization of RNA transcription and processing in Saccharomyces cerevisiae by Miller chromatin spreading.
    Osheim YN; French SL; Sikes ML; Beyer AL
    Methods Mol Biol; 2009; 464():55-69. PubMed ID: 18951179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remodeling of yeast CUP1 chromatin involves activator-dependent repositioning of nucleosomes over the entire gene and flanking sequences.
    Shen CH; Leblanc BP; Alfieri JA; Clark DJ
    Mol Cell Biol; 2001 Jan; 21(2):534-47. PubMed ID: 11134341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational analysis of promoter elements and chromatin features in yeast.
    Wyrick JJ
    Methods Mol Biol; 2012; 809():217-35. PubMed ID: 22113279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.