BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 22113558)

  • 1. Processive and nonprocessive cellulases for biofuel production--lessons from bacterial genomes and structural analysis.
    Wilson DB
    Appl Microbiol Biotechnol; 2012 Jan; 93(2):497-502. PubMed ID: 22113558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulases for biomass degradation: comparing recombinant cellulase expression platforms.
    Garvey M; Klose H; Fischer R; Lambertz C; Commandeur U
    Trends Biotechnol; 2013 Oct; 31(10):581-93. PubMed ID: 23910542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of novel biomass-degrading enzymes from genomic dark matter: Populating genomic sequence space with functional annotation.
    Piao H; Froula J; Du C; Kim TW; Hawley ER; Bauer S; Wang Z; Ivanova N; Clark DS; Klenk HP; Hess M
    Biotechnol Bioeng; 2014 Aug; 111(8):1550-65. PubMed ID: 24728961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellulases and biofuels.
    Wilson DB
    Curr Opin Biotechnol; 2009 Jun; 20(3):295-9. PubMed ID: 19502046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding modules alter the activity of chimeric cellulases: Effects of biomass pretreatment and enzyme source.
    Kim TW; Chokhawala HA; Nadler DC; Blanch HW; Clark DS
    Biotechnol Bioeng; 2010 Nov; 107(4):601-11. PubMed ID: 20623472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Consolidated bioprocessing of cellulosic biomass: an update.
    Lynd LR; van Zyl WH; McBride JE; Laser M
    Curr Opin Biotechnol; 2005 Oct; 16(5):577-83. PubMed ID: 16154338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Culture-independent digging of cellulases and genes from natural environments].
    Zhu Y; Liu W; Wang L; Chen G
    Sheng Wu Gong Cheng Xue Bao; 2009 Dec; 25(12):1838-43. PubMed ID: 20352958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycosylation of Cellulases: Engineering Better Enzymes for Biofuels.
    Greene ER; Himmel ME; Beckham GT; Tan Z
    Adv Carbohydr Chem Biochem; 2015; 72():63-112. PubMed ID: 26613815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioprospecting of functional cellulases from metagenome for second generation biofuel production: a review.
    Tiwari R; Nain L; Labrou NE; Shukla P
    Crit Rev Microbiol; 2018 Mar; 44(2):244-257. PubMed ID: 28609211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of metagenomic techniques in mining enzymes from microbial communities for biofuel synthesis.
    Xing MN; Zhang XZ; Huang H
    Biotechnol Adv; 2012; 30(4):920-9. PubMed ID: 22306331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Approaches for improving thermostability characteristics in cellulases.
    Anbar M; Bayer EA
    Methods Enzymol; 2012; 510():261-71. PubMed ID: 22608731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alternatives to Trichoderma reesei in biofuel production.
    Gusakov AV
    Trends Biotechnol; 2011 Sep; 29(9):419-25. PubMed ID: 21612834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellulases: ambiguous nonhomologous enzymes in a genomic perspective.
    Sukharnikov LO; Cantwell BJ; Podar M; Zhulin IB
    Trends Biotechnol; 2011 Oct; 29(10):473-9. PubMed ID: 21683463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Robust Cellulases for Tailored Lignocellulosic Degradation Cocktails.
    Contreras F; Pramanik S; Rozhkova AM; Zorov IN; Korotkova O; Sinitsyn AP; Schwaneberg U; Davari MD
    Int J Mol Sci; 2020 Feb; 21(5):. PubMed ID: 32111065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The porcine gut microbial metagenomic library for mining novel cellulases established from growing pigs fed cellulose-supplemented high-fat diets.
    Wang W; Archbold T; Kimber MS; Li J; Lam JS; Fan MZ
    J Anim Sci; 2012 Dec; 90 Suppl 4():400-2. PubMed ID: 23365392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applications of computational science for understanding enzymatic deconstruction of cellulose.
    Beckham GT; Bomble YJ; Bayer EA; Himmel ME; Crowley MF
    Curr Opin Biotechnol; 2011 Apr; 22(2):231-8. PubMed ID: 21168322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting cellulolytic complexes.
    Mingardon F; Chanal A; López-Contreras AM; Dray C; Bayer EA; Fierobe HP
    Appl Environ Microbiol; 2007 Jun; 73(12):3822-32. PubMed ID: 17468286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New enzyme insights drive advances in commercial ethanol production.
    Harris PV; Xu F; Kreel NE; Kang C; Fukuyama S
    Curr Opin Chem Biol; 2014 Apr; 19():162-70. PubMed ID: 24681544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ imaging of single carbohydrate-binding modules on cellulose microfibrils.
    Dagel DJ; Liu YS; Zhong L; Luo Y; Himmel ME; Xu Q; Zeng Y; Ding SY; Smith S
    J Phys Chem B; 2011 Feb; 115(4):635-41. PubMed ID: 21162585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergism of fungal and bacterial cellulases and hemicellulases: a novel perspective for enhanced bio-ethanol production.
    Bhattacharya AS; Bhattacharya A; Pletschke BI
    Biotechnol Lett; 2015 Jun; 37(6):1117-29. PubMed ID: 25656474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.