These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 22113558)

  • 41. Towards new enzymes for biofuels: lessons from chitinase research.
    Eijsink VG; Vaaje-Kolstad G; Vårum KM; Horn SJ
    Trends Biotechnol; 2008 May; 26(5):228-35. PubMed ID: 18367275
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genome sequence of an omnipotent fungus.
    Teeri TT
    Nat Biotechnol; 2004 Jun; 22(6):679-80. PubMed ID: 15175686
    [No Abstract]   [Full Text] [Related]  

  • 43. Tissue-specific biomass recalcitrance in corn stover pretreated with liquid hot-water: enzymatic hydrolysis (part 1).
    Zeng M; Ximenes E; Ladisch MR; Mosier NS; Vermerris W; Huang CP; Sherman DM
    Biotechnol Bioeng; 2012 Feb; 109(2):390-7. PubMed ID: 21928336
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa.
    Phillips CM; Beeson WT; Cate JH; Marletta MA
    ACS Chem Biol; 2011 Dec; 6(12):1399-406. PubMed ID: 22004347
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hidden cellulases in termites: revision of an old hypothesis.
    Tokuda G; Watanabe H
    Biol Lett; 2007 Jun; 3(3):336-9. PubMed ID: 17374589
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In vitro biodegradability and mechanical properties of bioabsorbable bacterial cellulose incorporating cellulases.
    Hu Y; Catchmark JM
    Acta Biomater; 2011 Jul; 7(7):2835-45. PubMed ID: 21459165
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Assessing cellulase performance on pretreated lignocellulosic biomass using saccharification and fermentation-based protocols.
    Dowe N
    Methods Mol Biol; 2009; 581():233-45. PubMed ID: 19768626
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Isolation and partial characterization of novel genes encoding acidic cellulases from metagenomes of buffalo rumens.
    Duan CJ; Xian L; Zhao GC; Feng Y; Pang H; Bai XL; Tang JL; Ma QS; Feng JX
    J Appl Microbiol; 2009 Jul; 107(1):245-56. PubMed ID: 19302301
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Production and characterization of cellulases and hemicellulases by Acremonium cellulolyticus using rice straw subjected to various pretreatments as the carbon source.
    Hideno A; Inoue H; Tsukahara K; Yano S; Fang X; Endo T; Sawayama S
    Enzyme Microb Technol; 2011 Feb; 48(2):162-8. PubMed ID: 22112826
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cellulases: Classification, Methods of Determination and Industrial Applications.
    Sharma A; Tewari R; Rana SS; Soni R; Soni SK
    Appl Biochem Biotechnol; 2016 Aug; 179(8):1346-80. PubMed ID: 27068832
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Two noncellulosomal cellulases of Clostridium thermocellum, Cel9I and Cel48Y, hydrolyse crystalline cellulose synergistically.
    Berger E; Zhang D; Zverlov VV; Schwarz WH
    FEMS Microbiol Lett; 2007 Mar; 268(2):194-201. PubMed ID: 17227469
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparison of the synergistic action of two thermostable xylanases from GH families 10 and 11 with thermostable cellulases in lignocellulose hydrolysis.
    Zhang J; Tuomainen P; Siika-Aho M; Viikari L
    Bioresour Technol; 2011 Oct; 102(19):9090-5. PubMed ID: 21767947
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Progress and strategies on bioethanol production from lignocellulose by consolidated bioprocessing (CBP) using Saccharomyces cerevisiae].
    Xu L; Shen Y; Bao X
    Sheng Wu Gong Cheng Xue Bao; 2010 Jul; 26(7):870-9. PubMed ID: 20954386
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Use of cellulases and recombinant cellulose binding domains for refining TCF kraft pulp.
    Cadena EM; Chriac AI; Pastor FI; Diaz P; Vidal T; Torres AL
    Biotechnol Prog; 2010; 26(4):960-7. PubMed ID: 20730755
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A microscale platform for integrated cell-free expression and activity screening of cellulases.
    Chandrasekaran A; Bharadwaj R; Park JI; Sapra R; Adams PD; Singh AK
    J Proteome Res; 2010 Nov; 9(11):5677-83. PubMed ID: 20735086
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Binding characteristics of Trichoderma reesei cellulases on untreated, ammonia fiber expansion (AFEX), and dilute-acid pretreated lignocellulosic biomass.
    Gao D; Chundawat SP; Uppugundla N; Balan V; Dale BE
    Biotechnol Bioeng; 2011 Aug; 108(8):1788-800. PubMed ID: 21437882
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A multistage process to enhance cellobiose production from cellulosic materials.
    Vanderghem C; Boquel P; Blecker C; Paquot M
    Appl Biochem Biotechnol; 2010 Apr; 160(8):2300-7. PubMed ID: 19669625
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cellulases from insects.
    Fischer R; Ostafe R; Twyman RM
    Adv Biochem Eng Biotechnol; 2013; 136():51-64. PubMed ID: 23728162
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Assessment of saccharification efficacy in the cellulase system of the brown rot fungus Gloeophyllum trabeum.
    Tewalt J; Schilling J
    Appl Microbiol Biotechnol; 2010 May; 86(6):1785-93. PubMed ID: 20177887
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Compatible ionic liquid-cellulases system for hydrolysis of lignocellulosic biomass.
    Wang Y; Radosevich M; Hayes D; Labbé N
    Biotechnol Bioeng; 2011 May; 108(5):1042-8. PubMed ID: 21191999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.