BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 22113869)

  • 1. Butyrate activates the cAMP-protein kinase A-cAMP response element-binding protein signaling pathway in Caco-2 cells.
    Wang A; Si H; Liu D; Jiang H
    J Nutr; 2012 Jan; 142(1):1-6. PubMed ID: 22113869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The flavonol glycoside icariin promotes bone formation in growing rats by activating the cAMP signaling pathway in primary cilia of osteoblasts.
    Shi W; Gao Y; Wang Y; Zhou J; Wei Z; Ma X; Ma H; Xian CJ; Wang J; Chen K
    J Biol Chem; 2017 Dec; 292(51):20883-20896. PubMed ID: 29089388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. cAMP stringently regulates human cathelicidin antimicrobial peptide expression in the mucosal epithelial cells by activating cAMP-response element-binding protein, AP-1, and inducible cAMP early repressor.
    Chakraborty K; Maity PC; Sil AK; Takeda Y; Das S
    J Biol Chem; 2009 Aug; 284(33):21810-21827. PubMed ID: 19531482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 1,2-Dichloroethane causes anxiety and cognitive dysfunction in mice by disturbing GABA metabolism and inhibiting the cAMP-PKA-CREB signaling pathway.
    Qin Y; Huang W; Wang Z; Wang C; Wang C; Zhang M; Wu S; Wang G; Zhao F
    Ecotoxicol Environ Saf; 2024 Jul; 279():116464. PubMed ID: 38759534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mitochondrial CO2-adenylyl cyclase-cAMP signalosome controls yeast normoxic cytochrome c oxidase activity.
    Hess KC; Liu J; Manfredi G; Mühlschlegel FA; Buck J; Levin LR; Barrientos A
    FASEB J; 2014 Oct; 28(10):4369-80. PubMed ID: 25002117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of cAMP in Cardiomyocyte Viability: Beneficial or Detrimental?
    Zhang Y; Chen S; Luo L; Greenly S; Shi H; Xu JJ; Yan C
    Circ Res; 2023 Nov; 133(11):902-923. PubMed ID: 37850368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein Kinase A in neurological disorders.
    Glebov-McCloud AGP; Saide WS; Gaine ME; Strack S
    J Neurodev Disord; 2024 Mar; 16(1):9. PubMed ID: 38481146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of MCA-MAO on cAMP pathway in rats with cerebral hemorrhage.
    Jiang Y; Wang XF; Niu YL; Xia JH
    Eur Rev Med Pharmacol Sci; 2016 May; 20(9):1834-8. PubMed ID: 27212177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism.
    den Besten G; van Eunen K; Groen AK; Venema K; Reijngoud DJ; Bakker BM
    J Lipid Res; 2013 Sep; 54(9):2325-40. PubMed ID: 23821742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gut Microbiota-Derived Short-Chain Fatty Acids: Novel Regulators of Intestinal Serotonin Transporter.
    Buey B; Forcén A; Grasa L; Layunta E; Mesonero JE; Latorre E
    Life (Basel); 2023 Apr; 13(5):. PubMed ID: 37240731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Landscape of Tourette's Disorder.
    Widomska J; De Witte W; Buitelaar JK; Glennon JC; Poelmans G
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674940
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Rahman MS; Lee Y; Park DS; Kim YS
    J Microbiol Biotechnol; 2023 Jan; 33(1):96-105. PubMed ID: 36457182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclic Nucleotide Phosphodiesterases in Alcohol Use Disorders: Involving Gut Microbiota.
    Hou X; Rong C; Zhang Q; Song S; Cong Y; Zhang HT
    Int J Neuropsychopharmacol; 2023 Jan; 26(1):70-79. PubMed ID: 36087271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The microbiota-gut-kidney axis mediates host osmoregulation in a small desert mammal.
    Nouri Z; Zhang XY; Khakisahneh S; Degen AA; Wang DH
    NPJ Biofilms Microbiomes; 2022 Apr; 8(1):16. PubMed ID: 35379849
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Song L; He M; Sun Q; Wang Y; Zhang J; Fang Y; Liu S; Duan L
    Nutrients; 2021 Dec; 14(1):. PubMed ID: 35010992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbiota Signals during the Neonatal Period Forge Life-Long Immune Responses.
    Phillips-Farfán B; Gómez-Chávez F; Medina-Torres EA; Vargas-Villavicencio JA; Carvajal-Aguilera K; Camacho L
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dietary supplementation with a microencapsulated blend of organic acids and botanicals alters the kinome in the ileum and jejunum of Gallus gallus.
    Swaggerty CL; Arsenault RJ; Johnson C; Piva A; Grilli E
    PLoS One; 2020; 15(7):e0236950. PubMed ID: 32730335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The microbiota-gut-brain interaction in regulating host metabolic adaptation to cold in male Brandt's voles (Lasiopodomys brandtii).
    Bo TB; Zhang XY; Wen J; Deng K; Qin XW; Wang DH
    ISME J; 2019 Dec; 13(12):3037-3053. PubMed ID: 31455805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolite-Sensing G Protein-Coupled Receptors Connect the Diet-Microbiota-Metabolites Axis to Inflammatory Bowel Disease.
    Melhem H; Kaya B; Ayata CK; Hruz P; Niess JH
    Cells; 2019 May; 8(5):. PubMed ID: 31091682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial-Driven Butyrate Regulates Jejunal Homeostasis in Piglets During the Weaning Stage.
    Zhong X; Zhang Z; Wang S; Cao L; Zhou L; Sun A; Zhong Z; Nabben M
    Front Microbiol; 2018; 9():3335. PubMed ID: 30713531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.