BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 22114041)

  • 1. Direct hydrocyclization of biomass-derived levulinic acid to 2-methyltetrahydrofuran over nanocomposite copper/silica catalysts.
    Upare PP; Lee JM; Hwang YK; Hwang DW; Lee JH; Halligudi SB; Hwang JS; Chang JS
    ChemSusChem; 2011 Dec; 4(12):1749-52. PubMed ID: 22114041
    [No Abstract]   [Full Text] [Related]  

  • 2. Chemical Conversions of Biomass-Derived Platform Chemicals over Copper-Silica Nanocomposite Catalysts.
    Upare PP; Hwang YK; Lee JM; Hwang DW; Chang JS
    ChemSusChem; 2015 Jul; 8(14):2345-57. PubMed ID: 26192888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-Pot 2-Methyltetrahydrofuran Production from Levulinic Acid in Green Solvents Using Ni-Cu/Al2 O3 Catalysts.
    Obregón I; Gandarias I; Miletić N; Ocio A; Arias PL
    ChemSusChem; 2015 Oct; 8(20):3483-8. PubMed ID: 26350168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous hydrogenation of ethyl levulinate to γ-valerolactone and 2-methyl tetrahydrofuran over alumina doped Cu/SiO2 catalyst: the potential of commercialization.
    Zheng J; Zhu J; Xu X; Wang W; Li J; Zhao Y; Tang K; Song Q; Qi X; Kong D; Tang Y
    Sci Rep; 2016 Jul; 6():28898. PubMed ID: 27377401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced heterogeneous catalytic conversion of furfuryl alcohol into butyl levulinate.
    Demma Carà P; Ciriminna R; Shiju NR; Rothenberg G; Pagliaro M
    ChemSusChem; 2014 Mar; 7(3):835-40. PubMed ID: 24519990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conversion of levulinic acid and formic acid into γ-valerolactone over heterogeneous catalysts.
    Deng L; Zhao Y; Li J; Fu Y; Liao B; Guo QX
    ChemSusChem; 2010 Oct; 3(10):1172-5. PubMed ID: 20872402
    [No Abstract]   [Full Text] [Related]  

  • 7. Homogeneous Catalyzed Reactions of Levulinic Acid: To γ-Valerolactone and Beyond.
    Omoruyi U; Page S; Hallett J; Miller PW
    ChemSusChem; 2016 Aug; 9(16):2037-47. PubMed ID: 27464831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. W
    Rogowski J; Andrzejczuk M; Berlowska J; Binczarski M; Kregiel D; Kubiak A; Modelska M; Szubiakiewicz E; Stanishevsky A; Tomaszewska J; Witonska IA
    Molecules; 2017 Nov; 22(11):. PubMed ID: 29165394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of silica-gold nanocomposites and their porous nanoparticles by an in-situ approach.
    Kumar A; Pushparaj VL; Murugesan S; Viswanathan G; Nalamasu R; Linhardt RJ; Nalamasu O; Ajayan PM
    Langmuir; 2006 Oct; 22(21):8631-4. PubMed ID: 17014096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust Ruthenium Catalysts Supported on Mesoporous Cyclodextrin-Templated TiO
    Decarpigny C; Noël S; Addad A; Ponchel A; Monflier E; Bleta R
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33572104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Syntheses of biodiesel precursors: sulfonic acid catalysts for condensation of biomass-derived platform molecules.
    Balakrishnan M; Sacia ER; Bell AT
    ChemSusChem; 2014 Apr; 7(4):1078-85. PubMed ID: 24596031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of Copper in the Hydrogenation of Furfural and Levulinic Acid.
    García-Sancho C; Mérida-Robles JM; Cecilia-Buenestado JA; Moreno-Tost R; Maireles-Torres PJ
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A facile one-pot synthesis of colloidal stable, monodisperse, highly PEGylated CuS@mSiO2 nanocomposites for the combination of photothermal therapy and chemotherapy.
    Lu F; Wang J; Yang L; Zhu JJ
    Chem Commun (Camb); 2015 Jun; 51(46):9447-50. PubMed ID: 25958833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective Hydrogenation of Furfural to Furfuryl Alcohol in the Presence of a Recyclable Cobalt/SBA-15 Catalyst.
    Audemar M; Ciotonea C; De Oliveira Vigier K; Royer S; Ungureanu A; Dragoi B; Dumitriu E; Jérôme F
    ChemSusChem; 2015 Jun; 8(11):1885-91. PubMed ID: 25891431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drug-loaded, magnetic, hollow silica nanocomposites for nanomedicine.
    Zhou W; Gao P; Shao L; Caruntu D; Yu M; Chen J; O'Connor CJ
    Nanomedicine; 2005 Sep; 1(3):233-7. PubMed ID: 17292085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodeoxygenation of Levulinic Acid to γ-Valerolactone over Mesoporous Silica-Supported Cu-Ni Composite Catalysts.
    Popova M; Trendafilova I; Oykova M; Mitrev Y; Shestakova P; Mihályi MR; Szegedi Á
    Molecules; 2022 Aug; 27(17):. PubMed ID: 36080151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of macroporous silica biomass nanocomposite based on XG/MgSiO₃ for the removal of toxic ions.
    Ma W; Meng F; Cheng Z; Xin G; Duan S
    Bioresour Technol; 2015 Jun; 186():356-359. PubMed ID: 25862015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fe3O4 core/layered double hydroxide shell nanocomposite: versatile magnetic matrix for anionic functional materials.
    Li L; Feng Y; Li Y; Zhao W; Shi J
    Angew Chem Int Ed Engl; 2009; 48(32):5888-92. PubMed ID: 19575433
    [No Abstract]   [Full Text] [Related]  

  • 19. Silica coating and photochemical properties of layered double hydroxide/4,4'-diaminostilbene-2,2'-disulfonic acid nanocomposite.
    El-Toni AM; Yin S; Sato T
    J Colloid Interface Sci; 2006 Jan; 293(2):449-54. PubMed ID: 16023131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of Furandicarboxylic Acid Esters From Nonfood Feedstocks Without Concomitant Levulinic Acid Formation.
    van der Klis F; van Haveren J; van Es DS; Bitter JH
    ChemSusChem; 2017 Apr; 10(7):1460-1468. PubMed ID: 28124823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.