BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 22114057)

  • 1. A rational self-sacrificing template route to metal-organic framework nanotubes and reversible vapor-phase detection of nitroaromatic explosives.
    Li R; Yuan YP; Qiu LG; Zhang W; Zhu JF
    Small; 2012 Jan; 8(2):225-30. PubMed ID: 22114057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fluorescent sensor for highly selective detection of nitroaromatic explosives based on a 2D, extremely stable, metal-organic framework.
    Zhang SR; Du DY; Qin JS; Bao SJ; Li SL; He WW; Lan YQ; Shen P; Su ZM
    Chemistry; 2014 Mar; 20(13):3589-94. PubMed ID: 24577888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A luminescent microporous metal-organic framework for the fast and reversible detection of high explosives.
    Lan A; Li K; Wu H; Olson DH; Emge TJ; Ki W; Hong M; Li J
    Angew Chem Int Ed Engl; 2009; 48(13):2334-8. PubMed ID: 19180622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave-assisted synthesis of highly fluorescent nanoparticles of a melamine-based porous covalent organic framework for trace-level detection of nitroaromatic explosives.
    Zhang W; Qiu LG; Yuan YP; Xie AJ; Shen YH; Zhu JF
    J Hazard Mater; 2012 Jun; 221-222():147-54. PubMed ID: 22560174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid visual detection of nitroaromatic explosives using a luminescent europium-organic framework material.
    He N; Gao M; Shen D; Li H; Han Z; Zhao P
    Forensic Sci Int; 2019 Apr; 297():1-7. PubMed ID: 30739882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. H-Bonding Interactions Induced Two Isostructural Cd(II) Metal-Organic Frameworks Showing Different Selective Detection of Nitroaromatic Explosives.
    Wang ZJ; Qin L; Chen JX; Zheng HG
    Inorg Chem; 2016 Nov; 55(21):10999-11005. PubMed ID: 27767307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescent metal-organic framework for selective sensing of nitroaromatic explosives.
    Gole B; Bar AK; Mukherjee PS
    Chem Commun (Camb); 2011 Nov; 47(44):12137-9. PubMed ID: 21993497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-sensitivity detection of nitroaromatic compounds (NACs) by the pillared-layer metal-organic framework synthesized via ultrasonic method.
    Hakimifar A; Morsali A
    Ultrason Sonochem; 2019 Apr; 52():62-68. PubMed ID: 30482438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Luminescent metal-organic framework-functionalized graphene oxide nanocomposites and the reversible detection of high explosives.
    Lee JH; Jaworski J; Jung JH
    Nanoscale; 2013 Sep; 5(18):8533-40. PubMed ID: 23892560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modification of extended open frameworks with fluorescent tags for sensing explosives: competition between size selectivity and electron deficiency.
    Gole B; Bar AK; Mukherjee PS
    Chemistry; 2014 Feb; 20(8):2276-91. PubMed ID: 24459002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid and Specific Aqueous-Phase Detection of Nitroaromatic Explosives with Inherent Porphyrin Recognition Sites in Metal-Organic Frameworks.
    Yang J; Wang Z; Hu K; Li Y; Feng J; Shi J; Gu J
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):11956-64. PubMed ID: 25988802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AIE-active tetraphenylethene functionalized metal-organic framework for selective detection of nitroaromatic explosives and organic photocatalysis.
    Li QY; Ma Z; Zhang WQ; Xu JL; Wei W; Lu H; Zhao X; Wang XJ
    Chem Commun (Camb); 2016 Sep; 52(75):11284-11287. PubMed ID: 27709152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A systematic study of fluorescence-based detection of nitroexplosives and other aromatics in the vapor phase by microporous metal-organic frameworks.
    Pramanik S; Hu Z; Zhang X; Zheng C; Kelly S; Li J
    Chemistry; 2013 Nov; 19(47):15964-71. PubMed ID: 24123511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of magnetically separable fluorescent terbium-based MOF nanospheres for highly selective trace-level detection of TNT.
    Qian JJ; Qiu LG; Wang YM; Yuan YP; Xie AJ; Shen YH
    Dalton Trans; 2014 Mar; 43(10):3978-83. PubMed ID: 24452313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two luminescent Zn(II) metal-organic frameworks for exceptionally selective detection of picric acid explosives.
    Shi ZQ; Guo ZJ; Zheng HG
    Chem Commun (Camb); 2015 May; 51(39):8300-3. PubMed ID: 25877404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Advancements for the Recognization of Nitroaromatic Explosives Using Calixarene Based Fluorescent Probes.
    Desai V; Panchal M; Dey S; Panjwani F; Jain VK
    J Fluoresc; 2022 Jan; 32(1):67-79. PubMed ID: 34687396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Flexible Two-Fold Interpenetrated Indium MOF Exhibiting Dynamic Response to Gas Adsorption and High-Sensitivity Detection of Nitroaromatic Explosives.
    Cao Z; Chen L; Li S; Yu M; Li Z; Zhou K; Liu C; Jiang F; Hong M
    Chem Asian J; 2019 Oct; 14(20):3597-3602. PubMed ID: 31069916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Template-directed synthesis of silica nanotubes for explosive detection.
    Yildirim A; Acar H; Erkal TS; Bayindir M; Guler MO
    ACS Appl Mater Interfaces; 2011 Oct; 3(10):4159-64. PubMed ID: 21942571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast, highly selective and sensitive anionic metal-organic framework with nitrogen-rich sites fluorescent chemosensor for nitro explosives detection.
    Wang XS; Li L; Yuan DQ; Huang YB; Cao R
    J Hazard Mater; 2018 Feb; 344():283-290. PubMed ID: 29055832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A luminescent heterometallic metal-organic framework for the naked-eye discrimination of nitroaromatic explosives.
    Qi X; Jin Y; Li N; Wang Z; Wang K; Zhang Q
    Chem Commun (Camb); 2017 Sep; 53(74):10318-10321. PubMed ID: 28872166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.