These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 22114275)

  • 1. Gain field encoding of the kinematics of both arms in the internal model enables flexible bimanual action.
    Yokoi A; Hirashima M; Nozaki D
    J Neurosci; 2011 Nov; 31(47):17058-68. PubMed ID: 22114275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Context-dependent partitioning of motor learning in bimanual movements.
    Howard IS; Ingram JN; Wolpert DM
    J Neurophysiol; 2010 Oct; 104(4):2082-91. PubMed ID: 20685927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unilateral, 3D Arm Movement Kinematics Are Encoded in Ipsilateral Human Cortex.
    Bundy DT; Szrama N; Pahwa M; Leuthardt EC
    J Neurosci; 2018 Nov; 38(47):10042-10056. PubMed ID: 30301759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lateralized sensitivity of motor memories to the kinematics of the opposite arm reveals functional specialization during bimanual actions.
    Yokoi A; Hirashima M; Nozaki D
    J Neurosci; 2014 Jul; 34(27):9141-51. PubMed ID: 24990934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Balanced motor primitive can explain generalization of motor learning effects between unimanual and bimanual movements.
    Takiyama K; Sakai Y
    Sci Rep; 2016 Mar; 6():23331. PubMed ID: 27025168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unified nature of bimanual movements revealed by separating the preparation of each arm.
    Blinch J; Franks IM; Carpenter MG; Chua R
    Exp Brain Res; 2015 Jun; 233(6):1931-44. PubMed ID: 25850406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shared bimanual tasks elicit bimanual reflexes during movement.
    Mutha PK; Sainburg RL
    J Neurophysiol; 2009 Dec; 102(6):3142-55. PubMed ID: 19793874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronal populations in primary motor cortex encode bimanual arm movements.
    Steinberg O; Donchin O; Gribova A; Cardosa de Oliveira S; Bergman H; Vaadia E
    Eur J Neurosci; 2002 Apr; 15(8):1371-80. PubMed ID: 11994131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limitations on coupling of bimanual movements caused by arm dominance: when the muscle homology principle fails.
    Dounskaia N; Nogueira KG; Swinnen SP; Drummond E
    J Neurophysiol; 2010 Apr; 103(4):2027-38. PubMed ID: 20071629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Composition and decomposition in bimanual dynamic learning.
    Howard IS; Ingram JN; Wolpert DM
    J Neurosci; 2008 Oct; 28(42):10531-40. PubMed ID: 18923029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of control during bimanual movement and stabilization.
    Takagi A; Kashino M
    Sci Rep; 2024 Jul; 14(1):16506. PubMed ID: 39019893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transfer of learning between the arms during bimanual reaching.
    Harley LR; Prilutsky BI
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6785-8. PubMed ID: 23367487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visuomotor learning generalizes between bilateral and unilateral conditions despite varying degrees of bilateral interference.
    Wang J; Mordkoff JT; Sainburg RL
    J Neurophysiol; 2010 Dec; 104(6):2913-21. PubMed ID: 20881203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limb dominance results from asymmetries in predictive and impedance control mechanisms.
    Yadav V; Sainburg RL
    PLoS One; 2014; 9(4):e93892. PubMed ID: 24695543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interlimb coupling strength scales with movement amplitude.
    Peper CL; de Boer BJ; de Poel HJ; Beek PJ
    Neurosci Lett; 2008 May; 437(1):10-4. PubMed ID: 18423866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuromuscular and biomechanical factors codetermine the solution to motor redundancy in rhythmic multijoint arm movement.
    de Rugy A; Riek S; Oytam Y; Carroll TJ; Davoodi R; Carson RG
    Exp Brain Res; 2008 Aug; 189(4):421-34. PubMed ID: 18545990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feedforward compensation for novel dynamics depends on force field orientation but is similar for the left and right arms.
    Reuter EM; Cunnington R; Mattingley JB; Riek S; Carroll TJ
    J Neurophysiol; 2016 Nov; 116(5):2260-2271. PubMed ID: 27582293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Left hemisphere dominance for bilateral kinematic encoding in the human brain.
    Merrick CM; Dixon TC; Breska A; Lin J; Chang EF; King-Stephens D; Laxer KD; Weber PB; Carmena J; Thomas Knight R; Ivry RB
    Elife; 2022 Mar; 11():. PubMed ID: 35227374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physically coupling two objects in a bimanual task alters kinematics but not end-state comfort.
    Hughes CM; Haddad JM; Franz EA; Zelaznik HN; Ryu JH
    Exp Brain Res; 2011 Jun; 211(2):219-29. PubMed ID: 21484393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contralateral manual compensation for velocity-dependent force perturbations.
    Jackson CP; Miall RC
    Exp Brain Res; 2008 Jan; 184(2):261-7. PubMed ID: 17973103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.